Find the information you're looking for at Westonci.ca, the trusted Q&A platform with a community of knowledgeable experts. Get expert answers to your questions quickly and accurately from our dedicated community of professionals. Join our platform to connect with experts ready to provide precise answers to your questions in different areas.
Sagot :
To determine the equation that relates the number of purple seashells ([tex]\( p \)[/tex]) to the number of white seashells ([tex]\( w \)[/tex]), we need to analyze the given data:
[tex]\[ \begin{array}{|c|c|c|c|c|c|c|} \hline \text{White Seashells} & 3 & 6 & 9 & 12 & 15 & 18 \\ \hline \text{Purple Seashells} & 5 & 10 & 15 & 20 & 25 & 30 \\ \hline \end{array} \][/tex]
First, we'll find the ratio of the number of purple seashells ([tex]\( p \)[/tex]) to the number of white seashells ([tex]\( w \)[/tex]) for each pair of data points. The formula to calculate the ratio is:
[tex]\[ \text{ratio} = \frac{p}{w} \][/tex]
Calculate the ratios for each corresponding pair:
1. For [tex]\( w = 3 \)[/tex] and [tex]\( p = 5 \)[/tex]:
[tex]\[ \frac{5}{3} = 1.6666666666666667 \][/tex]
2. For [tex]\( w = 6 \)[/tex] and [tex]\( p = 10 \)[/tex]:
[tex]\[ \frac{10}{6} = 1.6666666666666667 \][/tex]
3. For [tex]\( w = 9 \)[/tex] and [tex]\( p = 15 \)[/tex]:
[tex]\[ \frac{15}{9} = 1.6666666666666667 \][/tex]
4. For [tex]\( w = 12 \)[/tex] and [tex]\( p = 20 \)[/tex]:
[tex]\[ \frac{20}{12} = 1.6666666666666667 \][/tex]
5. For [tex]\( w = 15 \)[/tex] and [tex]\( p = 25 \)[/tex]:
[tex]\[ \frac{25}{15} = 1.6666666666666667 \][/tex]
6. For [tex]\( w = 18 \)[/tex] and [tex]\( p = 30 \)[/tex]:
[tex]\[ \frac{30}{18} = 1.6666666666666667 \][/tex]
As we can see, the ratio [tex]\( \frac{p}{w} \)[/tex] is consistent and equals approximately 1.6667 for all pairs. This indicates a linear relationship between [tex]\( p \)[/tex] and [tex]\( w \)[/tex]. The consistent ratio suggests that:
[tex]\[ p = k \cdot w \][/tex]
where [tex]\( k \)[/tex] is the constant ratio. In this case, [tex]\( k \approx 1.6667 \)[/tex].
Rewriting the constant ratio in fractional form, we get:
[tex]\[ k = \frac{5}{3} \][/tex]
Thus, the relationship between [tex]\( p \)[/tex] and [tex]\( w \)[/tex] is:
[tex]\[ p = \frac{5}{3} w \][/tex]
Hence, the correct equation that relates the number of purple shells [tex]\( p \)[/tex] to the number of white shells [tex]\( w \)[/tex] is:
[tex]\[ \boxed{p = \frac{5}{3} w} \][/tex]
[tex]\[ \begin{array}{|c|c|c|c|c|c|c|} \hline \text{White Seashells} & 3 & 6 & 9 & 12 & 15 & 18 \\ \hline \text{Purple Seashells} & 5 & 10 & 15 & 20 & 25 & 30 \\ \hline \end{array} \][/tex]
First, we'll find the ratio of the number of purple seashells ([tex]\( p \)[/tex]) to the number of white seashells ([tex]\( w \)[/tex]) for each pair of data points. The formula to calculate the ratio is:
[tex]\[ \text{ratio} = \frac{p}{w} \][/tex]
Calculate the ratios for each corresponding pair:
1. For [tex]\( w = 3 \)[/tex] and [tex]\( p = 5 \)[/tex]:
[tex]\[ \frac{5}{3} = 1.6666666666666667 \][/tex]
2. For [tex]\( w = 6 \)[/tex] and [tex]\( p = 10 \)[/tex]:
[tex]\[ \frac{10}{6} = 1.6666666666666667 \][/tex]
3. For [tex]\( w = 9 \)[/tex] and [tex]\( p = 15 \)[/tex]:
[tex]\[ \frac{15}{9} = 1.6666666666666667 \][/tex]
4. For [tex]\( w = 12 \)[/tex] and [tex]\( p = 20 \)[/tex]:
[tex]\[ \frac{20}{12} = 1.6666666666666667 \][/tex]
5. For [tex]\( w = 15 \)[/tex] and [tex]\( p = 25 \)[/tex]:
[tex]\[ \frac{25}{15} = 1.6666666666666667 \][/tex]
6. For [tex]\( w = 18 \)[/tex] and [tex]\( p = 30 \)[/tex]:
[tex]\[ \frac{30}{18} = 1.6666666666666667 \][/tex]
As we can see, the ratio [tex]\( \frac{p}{w} \)[/tex] is consistent and equals approximately 1.6667 for all pairs. This indicates a linear relationship between [tex]\( p \)[/tex] and [tex]\( w \)[/tex]. The consistent ratio suggests that:
[tex]\[ p = k \cdot w \][/tex]
where [tex]\( k \)[/tex] is the constant ratio. In this case, [tex]\( k \approx 1.6667 \)[/tex].
Rewriting the constant ratio in fractional form, we get:
[tex]\[ k = \frac{5}{3} \][/tex]
Thus, the relationship between [tex]\( p \)[/tex] and [tex]\( w \)[/tex] is:
[tex]\[ p = \frac{5}{3} w \][/tex]
Hence, the correct equation that relates the number of purple shells [tex]\( p \)[/tex] to the number of white shells [tex]\( w \)[/tex] is:
[tex]\[ \boxed{p = \frac{5}{3} w} \][/tex]
Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Your questions are important to us at Westonci.ca. Visit again for expert answers and reliable information.