Westonci.ca is the best place to get answers to your questions, provided by a community of experienced and knowledgeable experts. Connect with a community of experts ready to help you find accurate solutions to your questions quickly and efficiently. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.
Sagot :
To determine the equation that relates the number of purple seashells ([tex]\( p \)[/tex]) to the number of white seashells ([tex]\( w \)[/tex]), we need to analyze the given data:
[tex]\[ \begin{array}{|c|c|c|c|c|c|c|} \hline \text{White Seashells} & 3 & 6 & 9 & 12 & 15 & 18 \\ \hline \text{Purple Seashells} & 5 & 10 & 15 & 20 & 25 & 30 \\ \hline \end{array} \][/tex]
First, we'll find the ratio of the number of purple seashells ([tex]\( p \)[/tex]) to the number of white seashells ([tex]\( w \)[/tex]) for each pair of data points. The formula to calculate the ratio is:
[tex]\[ \text{ratio} = \frac{p}{w} \][/tex]
Calculate the ratios for each corresponding pair:
1. For [tex]\( w = 3 \)[/tex] and [tex]\( p = 5 \)[/tex]:
[tex]\[ \frac{5}{3} = 1.6666666666666667 \][/tex]
2. For [tex]\( w = 6 \)[/tex] and [tex]\( p = 10 \)[/tex]:
[tex]\[ \frac{10}{6} = 1.6666666666666667 \][/tex]
3. For [tex]\( w = 9 \)[/tex] and [tex]\( p = 15 \)[/tex]:
[tex]\[ \frac{15}{9} = 1.6666666666666667 \][/tex]
4. For [tex]\( w = 12 \)[/tex] and [tex]\( p = 20 \)[/tex]:
[tex]\[ \frac{20}{12} = 1.6666666666666667 \][/tex]
5. For [tex]\( w = 15 \)[/tex] and [tex]\( p = 25 \)[/tex]:
[tex]\[ \frac{25}{15} = 1.6666666666666667 \][/tex]
6. For [tex]\( w = 18 \)[/tex] and [tex]\( p = 30 \)[/tex]:
[tex]\[ \frac{30}{18} = 1.6666666666666667 \][/tex]
As we can see, the ratio [tex]\( \frac{p}{w} \)[/tex] is consistent and equals approximately 1.6667 for all pairs. This indicates a linear relationship between [tex]\( p \)[/tex] and [tex]\( w \)[/tex]. The consistent ratio suggests that:
[tex]\[ p = k \cdot w \][/tex]
where [tex]\( k \)[/tex] is the constant ratio. In this case, [tex]\( k \approx 1.6667 \)[/tex].
Rewriting the constant ratio in fractional form, we get:
[tex]\[ k = \frac{5}{3} \][/tex]
Thus, the relationship between [tex]\( p \)[/tex] and [tex]\( w \)[/tex] is:
[tex]\[ p = \frac{5}{3} w \][/tex]
Hence, the correct equation that relates the number of purple shells [tex]\( p \)[/tex] to the number of white shells [tex]\( w \)[/tex] is:
[tex]\[ \boxed{p = \frac{5}{3} w} \][/tex]
[tex]\[ \begin{array}{|c|c|c|c|c|c|c|} \hline \text{White Seashells} & 3 & 6 & 9 & 12 & 15 & 18 \\ \hline \text{Purple Seashells} & 5 & 10 & 15 & 20 & 25 & 30 \\ \hline \end{array} \][/tex]
First, we'll find the ratio of the number of purple seashells ([tex]\( p \)[/tex]) to the number of white seashells ([tex]\( w \)[/tex]) for each pair of data points. The formula to calculate the ratio is:
[tex]\[ \text{ratio} = \frac{p}{w} \][/tex]
Calculate the ratios for each corresponding pair:
1. For [tex]\( w = 3 \)[/tex] and [tex]\( p = 5 \)[/tex]:
[tex]\[ \frac{5}{3} = 1.6666666666666667 \][/tex]
2. For [tex]\( w = 6 \)[/tex] and [tex]\( p = 10 \)[/tex]:
[tex]\[ \frac{10}{6} = 1.6666666666666667 \][/tex]
3. For [tex]\( w = 9 \)[/tex] and [tex]\( p = 15 \)[/tex]:
[tex]\[ \frac{15}{9} = 1.6666666666666667 \][/tex]
4. For [tex]\( w = 12 \)[/tex] and [tex]\( p = 20 \)[/tex]:
[tex]\[ \frac{20}{12} = 1.6666666666666667 \][/tex]
5. For [tex]\( w = 15 \)[/tex] and [tex]\( p = 25 \)[/tex]:
[tex]\[ \frac{25}{15} = 1.6666666666666667 \][/tex]
6. For [tex]\( w = 18 \)[/tex] and [tex]\( p = 30 \)[/tex]:
[tex]\[ \frac{30}{18} = 1.6666666666666667 \][/tex]
As we can see, the ratio [tex]\( \frac{p}{w} \)[/tex] is consistent and equals approximately 1.6667 for all pairs. This indicates a linear relationship between [tex]\( p \)[/tex] and [tex]\( w \)[/tex]. The consistent ratio suggests that:
[tex]\[ p = k \cdot w \][/tex]
where [tex]\( k \)[/tex] is the constant ratio. In this case, [tex]\( k \approx 1.6667 \)[/tex].
Rewriting the constant ratio in fractional form, we get:
[tex]\[ k = \frac{5}{3} \][/tex]
Thus, the relationship between [tex]\( p \)[/tex] and [tex]\( w \)[/tex] is:
[tex]\[ p = \frac{5}{3} w \][/tex]
Hence, the correct equation that relates the number of purple shells [tex]\( p \)[/tex] to the number of white shells [tex]\( w \)[/tex] is:
[tex]\[ \boxed{p = \frac{5}{3} w} \][/tex]
Thank you for visiting our platform. We hope you found the answers you were looking for. Come back anytime you need more information. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Thank you for visiting Westonci.ca. Stay informed by coming back for more detailed answers.