Looking for reliable answers? Westonci.ca is the ultimate Q&A platform where experts share their knowledge on various topics. Explore thousands of questions and answers from knowledgeable experts in various fields on our Q&A platform. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.
Sagot :
Sure! Let's solve the problem step-by-step:
1. Identify the given information:
- Spring constant ([tex]\(k\)[/tex]): 1400 N/m
- Stretched length of the spring ([tex]\(L_s\)[/tex]): 2.5 m
- Original (unstretched) length of the spring ([tex]\(L_o\)[/tex]): 1.0 m
2. Calculate the deformation (stretch) of the spring:
The deformation ([tex]\(x\)[/tex]) is the difference between the stretched length and the original length:
[tex]\[ x = L_s - L_o \][/tex]
Given:
[tex]\[ L_s = 2.5 \, \text{m} \][/tex]
[tex]\[ L_o = 1.0 \\, \text{m} \][/tex]
Substitute these values:
[tex]\[ x = 2.5 \, \text{m} - 1.0 \, \text{m} \][/tex]
[tex]\[ x = 1.5 \, \text{m} \][/tex]
3. Calculate the elastic potential energy stored in the spring:
The formula to calculate elastic potential energy ([tex]\(E\)[/tex]) stored in a spring is:
[tex]\[ E = \frac{1}{2} k x^2 \][/tex]
Here:
- [tex]\(k\)[/tex] is the spring constant (1400 N/m)
- [tex]\(x\)[/tex] is the deformation (1.5 m)
Substitute the values into the formula:
[tex]\[ E = \frac{1}{2} \times 1400 \, \frac{\text{N}}{\text{m}} \times (1.5 \, \text{m})^2 \][/tex]
[tex]\[ E = \frac{1}{2} \times 1400 \times 2.25 \][/tex]
[tex]\[ E = \frac{1}{2} \times 3150 \][/tex]
[tex]\[ E = 1575 \, \text{J} \][/tex]
4. Conclusion:
The elastic potential energy stored in the spring when it is stretched to a length of 2.5 m is 1575 J.
Therefore, the correct answer is:
[tex]\[ \text{1575 J} \][/tex]
1. Identify the given information:
- Spring constant ([tex]\(k\)[/tex]): 1400 N/m
- Stretched length of the spring ([tex]\(L_s\)[/tex]): 2.5 m
- Original (unstretched) length of the spring ([tex]\(L_o\)[/tex]): 1.0 m
2. Calculate the deformation (stretch) of the spring:
The deformation ([tex]\(x\)[/tex]) is the difference between the stretched length and the original length:
[tex]\[ x = L_s - L_o \][/tex]
Given:
[tex]\[ L_s = 2.5 \, \text{m} \][/tex]
[tex]\[ L_o = 1.0 \\, \text{m} \][/tex]
Substitute these values:
[tex]\[ x = 2.5 \, \text{m} - 1.0 \, \text{m} \][/tex]
[tex]\[ x = 1.5 \, \text{m} \][/tex]
3. Calculate the elastic potential energy stored in the spring:
The formula to calculate elastic potential energy ([tex]\(E\)[/tex]) stored in a spring is:
[tex]\[ E = \frac{1}{2} k x^2 \][/tex]
Here:
- [tex]\(k\)[/tex] is the spring constant (1400 N/m)
- [tex]\(x\)[/tex] is the deformation (1.5 m)
Substitute the values into the formula:
[tex]\[ E = \frac{1}{2} \times 1400 \, \frac{\text{N}}{\text{m}} \times (1.5 \, \text{m})^2 \][/tex]
[tex]\[ E = \frac{1}{2} \times 1400 \times 2.25 \][/tex]
[tex]\[ E = \frac{1}{2} \times 3150 \][/tex]
[tex]\[ E = 1575 \, \text{J} \][/tex]
4. Conclusion:
The elastic potential energy stored in the spring when it is stretched to a length of 2.5 m is 1575 J.
Therefore, the correct answer is:
[tex]\[ \text{1575 J} \][/tex]
We appreciate your time. Please revisit us for more reliable answers to any questions you may have. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Thank you for visiting Westonci.ca. Stay informed by coming back for more detailed answers.