Westonci.ca is the Q&A platform that connects you with experts who provide accurate and detailed answers. Get immediate and reliable solutions to your questions from a knowledgeable community of professionals on our platform. Join our platform to connect with experts ready to provide precise answers to your questions in different areas.
Sagot :
Certainly! Let's solve the problem step-by-step.
Given:
- The mass of the rock, [tex]\( m = 2.4 \)[/tex] kg.
- The acceleration due to gravity, [tex]\( g = 9.8 \)[/tex] m/s[tex]\(^2\)[/tex].
The table provided gives the mechanical energy and velocity for various trials. To determine the height above the ground, we need to use the relationship between mechanical energy, kinetic energy, and potential energy.
Mechanical Energy Formula:
[tex]\[ E_m = KE + PE \][/tex]
Where:
- [tex]\( KE \)[/tex] is the kinetic energy.
- [tex]\( PE \)[/tex] is the potential energy.
For each trial:
[tex]\[ E_m = \frac{1}{2} m v^2 + mgh \][/tex]
Rearranged to solve for height [tex]\( h \)[/tex]:
[tex]\[ h = \frac{E_m - \frac{1}{2} m v^2}{mg} \][/tex]
Let's write down the mechanical energy [tex]\( E_m \)[/tex] and velocity [tex]\( v \)[/tex] for each trial, and calculate the height [tex]\( h \)[/tex]:
1. Trial 1:
[tex]\[ E_m = 176.4 \text{ J}, \quad v = 7.0 \text{ m/s} \][/tex]
[tex]\[ h_1 = \frac{176.4 - \frac{1}{2} \cdot 2.4 \cdot (7.0)^2}{2.4 \cdot 9.8} \][/tex]
[tex]\[ h_1 = \frac{176.4 - 58.8}{23.52} \approx 5.00 \text{ m} \][/tex]
2. Trial 2:
[tex]\[ E_m = 157.7 \text{ J}, \quad v = 2.0 \text{ m/s} \][/tex]
[tex]\[ h_2 = \frac{157.7 - \frac{1}{2} \cdot 2.4 \cdot (2.0)^2}{2.4 \cdot 9.8} \][/tex]
[tex]\[ h_2 = \frac{157.7 - 4.8}{23.52} \approx 6.50 \text{ m} \][/tex]
3. Trial 3:
[tex]\[ E_m = 170.2 \text{ J}, \quad v = 6.0 \text{ m/s} \][/tex]
[tex]\[ h_3 = \frac{170.2 - \frac{1}{2} \cdot 2.4 \cdot (6.0)^2}{2.4 \cdot 9.8} \][/tex]
[tex]\[ h_3 = \frac{170.2 - 43.2}{23.52} \approx 5.40 \text{ m} \][/tex]
4. Trial 4:
[tex]\[ E_m = 123.7 \text{ J}, \quad v = 3.0 \text{ m/s} \][/tex]
[tex]\[ h_4 = \frac{123.7 - \frac{1}{2} \cdot 2.4 \cdot (3.0)^2}{2.4 \cdot 9.8} \][/tex]
[tex]\[ h_4 = \frac{123.7 - 10.8}{23.52} \approx 4.80 \text{ m} \][/tex]
Now we have the heights:
- Trial 1: [tex]\( 5.00 \)[/tex] m
- Trial 2: [tex]\( 6.50 \)[/tex] m
- Trial 3: [tex]\( 5.40 \)[/tex] m
- Trial 4: [tex]\( 4.80 \)[/tex] m
The maximum height is reached during Trial 2, at [tex]\( 6.50 \)[/tex] m.
Thus, during Trial 2, the rock was highest above the ground.
Given:
- The mass of the rock, [tex]\( m = 2.4 \)[/tex] kg.
- The acceleration due to gravity, [tex]\( g = 9.8 \)[/tex] m/s[tex]\(^2\)[/tex].
The table provided gives the mechanical energy and velocity for various trials. To determine the height above the ground, we need to use the relationship between mechanical energy, kinetic energy, and potential energy.
Mechanical Energy Formula:
[tex]\[ E_m = KE + PE \][/tex]
Where:
- [tex]\( KE \)[/tex] is the kinetic energy.
- [tex]\( PE \)[/tex] is the potential energy.
For each trial:
[tex]\[ E_m = \frac{1}{2} m v^2 + mgh \][/tex]
Rearranged to solve for height [tex]\( h \)[/tex]:
[tex]\[ h = \frac{E_m - \frac{1}{2} m v^2}{mg} \][/tex]
Let's write down the mechanical energy [tex]\( E_m \)[/tex] and velocity [tex]\( v \)[/tex] for each trial, and calculate the height [tex]\( h \)[/tex]:
1. Trial 1:
[tex]\[ E_m = 176.4 \text{ J}, \quad v = 7.0 \text{ m/s} \][/tex]
[tex]\[ h_1 = \frac{176.4 - \frac{1}{2} \cdot 2.4 \cdot (7.0)^2}{2.4 \cdot 9.8} \][/tex]
[tex]\[ h_1 = \frac{176.4 - 58.8}{23.52} \approx 5.00 \text{ m} \][/tex]
2. Trial 2:
[tex]\[ E_m = 157.7 \text{ J}, \quad v = 2.0 \text{ m/s} \][/tex]
[tex]\[ h_2 = \frac{157.7 - \frac{1}{2} \cdot 2.4 \cdot (2.0)^2}{2.4 \cdot 9.8} \][/tex]
[tex]\[ h_2 = \frac{157.7 - 4.8}{23.52} \approx 6.50 \text{ m} \][/tex]
3. Trial 3:
[tex]\[ E_m = 170.2 \text{ J}, \quad v = 6.0 \text{ m/s} \][/tex]
[tex]\[ h_3 = \frac{170.2 - \frac{1}{2} \cdot 2.4 \cdot (6.0)^2}{2.4 \cdot 9.8} \][/tex]
[tex]\[ h_3 = \frac{170.2 - 43.2}{23.52} \approx 5.40 \text{ m} \][/tex]
4. Trial 4:
[tex]\[ E_m = 123.7 \text{ J}, \quad v = 3.0 \text{ m/s} \][/tex]
[tex]\[ h_4 = \frac{123.7 - \frac{1}{2} \cdot 2.4 \cdot (3.0)^2}{2.4 \cdot 9.8} \][/tex]
[tex]\[ h_4 = \frac{123.7 - 10.8}{23.52} \approx 4.80 \text{ m} \][/tex]
Now we have the heights:
- Trial 1: [tex]\( 5.00 \)[/tex] m
- Trial 2: [tex]\( 6.50 \)[/tex] m
- Trial 3: [tex]\( 5.40 \)[/tex] m
- Trial 4: [tex]\( 4.80 \)[/tex] m
The maximum height is reached during Trial 2, at [tex]\( 6.50 \)[/tex] m.
Thus, during Trial 2, the rock was highest above the ground.
Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Westonci.ca is your go-to source for reliable answers. Return soon for more expert insights.