Looking for trustworthy answers? Westonci.ca is the ultimate Q&A platform where experts share their knowledge on various topics. Discover a wealth of knowledge from professionals across various disciplines on our user-friendly Q&A platform. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.
Sagot :
Certainly! Let's solve the problem step-by-step.
Given:
- The mass of the rock, [tex]\( m = 2.4 \)[/tex] kg.
- The acceleration due to gravity, [tex]\( g = 9.8 \)[/tex] m/s[tex]\(^2\)[/tex].
The table provided gives the mechanical energy and velocity for various trials. To determine the height above the ground, we need to use the relationship between mechanical energy, kinetic energy, and potential energy.
Mechanical Energy Formula:
[tex]\[ E_m = KE + PE \][/tex]
Where:
- [tex]\( KE \)[/tex] is the kinetic energy.
- [tex]\( PE \)[/tex] is the potential energy.
For each trial:
[tex]\[ E_m = \frac{1}{2} m v^2 + mgh \][/tex]
Rearranged to solve for height [tex]\( h \)[/tex]:
[tex]\[ h = \frac{E_m - \frac{1}{2} m v^2}{mg} \][/tex]
Let's write down the mechanical energy [tex]\( E_m \)[/tex] and velocity [tex]\( v \)[/tex] for each trial, and calculate the height [tex]\( h \)[/tex]:
1. Trial 1:
[tex]\[ E_m = 176.4 \text{ J}, \quad v = 7.0 \text{ m/s} \][/tex]
[tex]\[ h_1 = \frac{176.4 - \frac{1}{2} \cdot 2.4 \cdot (7.0)^2}{2.4 \cdot 9.8} \][/tex]
[tex]\[ h_1 = \frac{176.4 - 58.8}{23.52} \approx 5.00 \text{ m} \][/tex]
2. Trial 2:
[tex]\[ E_m = 157.7 \text{ J}, \quad v = 2.0 \text{ m/s} \][/tex]
[tex]\[ h_2 = \frac{157.7 - \frac{1}{2} \cdot 2.4 \cdot (2.0)^2}{2.4 \cdot 9.8} \][/tex]
[tex]\[ h_2 = \frac{157.7 - 4.8}{23.52} \approx 6.50 \text{ m} \][/tex]
3. Trial 3:
[tex]\[ E_m = 170.2 \text{ J}, \quad v = 6.0 \text{ m/s} \][/tex]
[tex]\[ h_3 = \frac{170.2 - \frac{1}{2} \cdot 2.4 \cdot (6.0)^2}{2.4 \cdot 9.8} \][/tex]
[tex]\[ h_3 = \frac{170.2 - 43.2}{23.52} \approx 5.40 \text{ m} \][/tex]
4. Trial 4:
[tex]\[ E_m = 123.7 \text{ J}, \quad v = 3.0 \text{ m/s} \][/tex]
[tex]\[ h_4 = \frac{123.7 - \frac{1}{2} \cdot 2.4 \cdot (3.0)^2}{2.4 \cdot 9.8} \][/tex]
[tex]\[ h_4 = \frac{123.7 - 10.8}{23.52} \approx 4.80 \text{ m} \][/tex]
Now we have the heights:
- Trial 1: [tex]\( 5.00 \)[/tex] m
- Trial 2: [tex]\( 6.50 \)[/tex] m
- Trial 3: [tex]\( 5.40 \)[/tex] m
- Trial 4: [tex]\( 4.80 \)[/tex] m
The maximum height is reached during Trial 2, at [tex]\( 6.50 \)[/tex] m.
Thus, during Trial 2, the rock was highest above the ground.
Given:
- The mass of the rock, [tex]\( m = 2.4 \)[/tex] kg.
- The acceleration due to gravity, [tex]\( g = 9.8 \)[/tex] m/s[tex]\(^2\)[/tex].
The table provided gives the mechanical energy and velocity for various trials. To determine the height above the ground, we need to use the relationship between mechanical energy, kinetic energy, and potential energy.
Mechanical Energy Formula:
[tex]\[ E_m = KE + PE \][/tex]
Where:
- [tex]\( KE \)[/tex] is the kinetic energy.
- [tex]\( PE \)[/tex] is the potential energy.
For each trial:
[tex]\[ E_m = \frac{1}{2} m v^2 + mgh \][/tex]
Rearranged to solve for height [tex]\( h \)[/tex]:
[tex]\[ h = \frac{E_m - \frac{1}{2} m v^2}{mg} \][/tex]
Let's write down the mechanical energy [tex]\( E_m \)[/tex] and velocity [tex]\( v \)[/tex] for each trial, and calculate the height [tex]\( h \)[/tex]:
1. Trial 1:
[tex]\[ E_m = 176.4 \text{ J}, \quad v = 7.0 \text{ m/s} \][/tex]
[tex]\[ h_1 = \frac{176.4 - \frac{1}{2} \cdot 2.4 \cdot (7.0)^2}{2.4 \cdot 9.8} \][/tex]
[tex]\[ h_1 = \frac{176.4 - 58.8}{23.52} \approx 5.00 \text{ m} \][/tex]
2. Trial 2:
[tex]\[ E_m = 157.7 \text{ J}, \quad v = 2.0 \text{ m/s} \][/tex]
[tex]\[ h_2 = \frac{157.7 - \frac{1}{2} \cdot 2.4 \cdot (2.0)^2}{2.4 \cdot 9.8} \][/tex]
[tex]\[ h_2 = \frac{157.7 - 4.8}{23.52} \approx 6.50 \text{ m} \][/tex]
3. Trial 3:
[tex]\[ E_m = 170.2 \text{ J}, \quad v = 6.0 \text{ m/s} \][/tex]
[tex]\[ h_3 = \frac{170.2 - \frac{1}{2} \cdot 2.4 \cdot (6.0)^2}{2.4 \cdot 9.8} \][/tex]
[tex]\[ h_3 = \frac{170.2 - 43.2}{23.52} \approx 5.40 \text{ m} \][/tex]
4. Trial 4:
[tex]\[ E_m = 123.7 \text{ J}, \quad v = 3.0 \text{ m/s} \][/tex]
[tex]\[ h_4 = \frac{123.7 - \frac{1}{2} \cdot 2.4 \cdot (3.0)^2}{2.4 \cdot 9.8} \][/tex]
[tex]\[ h_4 = \frac{123.7 - 10.8}{23.52} \approx 4.80 \text{ m} \][/tex]
Now we have the heights:
- Trial 1: [tex]\( 5.00 \)[/tex] m
- Trial 2: [tex]\( 6.50 \)[/tex] m
- Trial 3: [tex]\( 5.40 \)[/tex] m
- Trial 4: [tex]\( 4.80 \)[/tex] m
The maximum height is reached during Trial 2, at [tex]\( 6.50 \)[/tex] m.
Thus, during Trial 2, the rock was highest above the ground.
Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. Get the answers you need at Westonci.ca. Stay informed with our latest expert advice.