Westonci.ca is the Q&A platform that connects you with experts who provide accurate and detailed answers. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.
Sagot :
Certainly! Let's solve the problem step-by-step.
Given:
- The mass of the rock, [tex]\( m = 2.4 \)[/tex] kg.
- The acceleration due to gravity, [tex]\( g = 9.8 \)[/tex] m/s[tex]\(^2\)[/tex].
The table provided gives the mechanical energy and velocity for various trials. To determine the height above the ground, we need to use the relationship between mechanical energy, kinetic energy, and potential energy.
Mechanical Energy Formula:
[tex]\[ E_m = KE + PE \][/tex]
Where:
- [tex]\( KE \)[/tex] is the kinetic energy.
- [tex]\( PE \)[/tex] is the potential energy.
For each trial:
[tex]\[ E_m = \frac{1}{2} m v^2 + mgh \][/tex]
Rearranged to solve for height [tex]\( h \)[/tex]:
[tex]\[ h = \frac{E_m - \frac{1}{2} m v^2}{mg} \][/tex]
Let's write down the mechanical energy [tex]\( E_m \)[/tex] and velocity [tex]\( v \)[/tex] for each trial, and calculate the height [tex]\( h \)[/tex]:
1. Trial 1:
[tex]\[ E_m = 176.4 \text{ J}, \quad v = 7.0 \text{ m/s} \][/tex]
[tex]\[ h_1 = \frac{176.4 - \frac{1}{2} \cdot 2.4 \cdot (7.0)^2}{2.4 \cdot 9.8} \][/tex]
[tex]\[ h_1 = \frac{176.4 - 58.8}{23.52} \approx 5.00 \text{ m} \][/tex]
2. Trial 2:
[tex]\[ E_m = 157.7 \text{ J}, \quad v = 2.0 \text{ m/s} \][/tex]
[tex]\[ h_2 = \frac{157.7 - \frac{1}{2} \cdot 2.4 \cdot (2.0)^2}{2.4 \cdot 9.8} \][/tex]
[tex]\[ h_2 = \frac{157.7 - 4.8}{23.52} \approx 6.50 \text{ m} \][/tex]
3. Trial 3:
[tex]\[ E_m = 170.2 \text{ J}, \quad v = 6.0 \text{ m/s} \][/tex]
[tex]\[ h_3 = \frac{170.2 - \frac{1}{2} \cdot 2.4 \cdot (6.0)^2}{2.4 \cdot 9.8} \][/tex]
[tex]\[ h_3 = \frac{170.2 - 43.2}{23.52} \approx 5.40 \text{ m} \][/tex]
4. Trial 4:
[tex]\[ E_m = 123.7 \text{ J}, \quad v = 3.0 \text{ m/s} \][/tex]
[tex]\[ h_4 = \frac{123.7 - \frac{1}{2} \cdot 2.4 \cdot (3.0)^2}{2.4 \cdot 9.8} \][/tex]
[tex]\[ h_4 = \frac{123.7 - 10.8}{23.52} \approx 4.80 \text{ m} \][/tex]
Now we have the heights:
- Trial 1: [tex]\( 5.00 \)[/tex] m
- Trial 2: [tex]\( 6.50 \)[/tex] m
- Trial 3: [tex]\( 5.40 \)[/tex] m
- Trial 4: [tex]\( 4.80 \)[/tex] m
The maximum height is reached during Trial 2, at [tex]\( 6.50 \)[/tex] m.
Thus, during Trial 2, the rock was highest above the ground.
Given:
- The mass of the rock, [tex]\( m = 2.4 \)[/tex] kg.
- The acceleration due to gravity, [tex]\( g = 9.8 \)[/tex] m/s[tex]\(^2\)[/tex].
The table provided gives the mechanical energy and velocity for various trials. To determine the height above the ground, we need to use the relationship between mechanical energy, kinetic energy, and potential energy.
Mechanical Energy Formula:
[tex]\[ E_m = KE + PE \][/tex]
Where:
- [tex]\( KE \)[/tex] is the kinetic energy.
- [tex]\( PE \)[/tex] is the potential energy.
For each trial:
[tex]\[ E_m = \frac{1}{2} m v^2 + mgh \][/tex]
Rearranged to solve for height [tex]\( h \)[/tex]:
[tex]\[ h = \frac{E_m - \frac{1}{2} m v^2}{mg} \][/tex]
Let's write down the mechanical energy [tex]\( E_m \)[/tex] and velocity [tex]\( v \)[/tex] for each trial, and calculate the height [tex]\( h \)[/tex]:
1. Trial 1:
[tex]\[ E_m = 176.4 \text{ J}, \quad v = 7.0 \text{ m/s} \][/tex]
[tex]\[ h_1 = \frac{176.4 - \frac{1}{2} \cdot 2.4 \cdot (7.0)^2}{2.4 \cdot 9.8} \][/tex]
[tex]\[ h_1 = \frac{176.4 - 58.8}{23.52} \approx 5.00 \text{ m} \][/tex]
2. Trial 2:
[tex]\[ E_m = 157.7 \text{ J}, \quad v = 2.0 \text{ m/s} \][/tex]
[tex]\[ h_2 = \frac{157.7 - \frac{1}{2} \cdot 2.4 \cdot (2.0)^2}{2.4 \cdot 9.8} \][/tex]
[tex]\[ h_2 = \frac{157.7 - 4.8}{23.52} \approx 6.50 \text{ m} \][/tex]
3. Trial 3:
[tex]\[ E_m = 170.2 \text{ J}, \quad v = 6.0 \text{ m/s} \][/tex]
[tex]\[ h_3 = \frac{170.2 - \frac{1}{2} \cdot 2.4 \cdot (6.0)^2}{2.4 \cdot 9.8} \][/tex]
[tex]\[ h_3 = \frac{170.2 - 43.2}{23.52} \approx 5.40 \text{ m} \][/tex]
4. Trial 4:
[tex]\[ E_m = 123.7 \text{ J}, \quad v = 3.0 \text{ m/s} \][/tex]
[tex]\[ h_4 = \frac{123.7 - \frac{1}{2} \cdot 2.4 \cdot (3.0)^2}{2.4 \cdot 9.8} \][/tex]
[tex]\[ h_4 = \frac{123.7 - 10.8}{23.52} \approx 4.80 \text{ m} \][/tex]
Now we have the heights:
- Trial 1: [tex]\( 5.00 \)[/tex] m
- Trial 2: [tex]\( 6.50 \)[/tex] m
- Trial 3: [tex]\( 5.40 \)[/tex] m
- Trial 4: [tex]\( 4.80 \)[/tex] m
The maximum height is reached during Trial 2, at [tex]\( 6.50 \)[/tex] m.
Thus, during Trial 2, the rock was highest above the ground.
Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. We appreciate your time. Please come back anytime for the latest information and answers to your questions. Thank you for visiting Westonci.ca. Stay informed by coming back for more detailed answers.