Looking for trustworthy answers? Westonci.ca is the ultimate Q&A platform where experts share their knowledge on various topics. Get quick and reliable solutions to your questions from a community of seasoned experts on our user-friendly platform. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.
Sagot :
To determine the highest point the shot put reaches, we need to find the vertex of the parabola represented by the equation
[tex]\[ y = -0.01x^2 + 0.7x + 6. \][/tex]
The vertex of a parabola in the form [tex]\( y = ax^2 + bx + c \)[/tex] is given by the coordinates [tex]\((x, y)\)[/tex], where the x-coordinate can be found using the formula:
[tex]\[ x = -\frac{b}{2a}. \][/tex]
First, we identify the coefficients from the equation:
[tex]\[ a = -0.01, \][/tex]
[tex]\[ b = 0.7, \][/tex]
[tex]\[ c = 6. \][/tex]
Plugging in these values into the formula for the x-coordinate of the vertex, we get:
[tex]\[ x = -\frac{0.7}{2 \times -0.01} = -\frac{0.7}{-0.02} = 35. \][/tex]
Next, we substitute this x value back into the original equation to find the corresponding y value, which represents the highest point:
[tex]\[ y = -0.01(35)^2 + 0.7(35) + 6. \][/tex]
Calculating each term, we have:
[tex]\[ -0.01(35)^2 = -0.01 \times 1225 = -12.25, \][/tex]
[tex]\[ 0.7(35) = 24.5, \][/tex]
[tex]\[ 6 = 6. \][/tex]
Adding these together:
[tex]\[ y = -12.25 + 24.5 + 6 = 18.25. \][/tex]
Therefore, the highest point the shot put reaches is at the coordinates:
[tex]\[ (35, 18.25). \][/tex]
So, the highest point is 18.25 feet when the horizontal distance is 35 feet.
[tex]\[ y = -0.01x^2 + 0.7x + 6. \][/tex]
The vertex of a parabola in the form [tex]\( y = ax^2 + bx + c \)[/tex] is given by the coordinates [tex]\((x, y)\)[/tex], where the x-coordinate can be found using the formula:
[tex]\[ x = -\frac{b}{2a}. \][/tex]
First, we identify the coefficients from the equation:
[tex]\[ a = -0.01, \][/tex]
[tex]\[ b = 0.7, \][/tex]
[tex]\[ c = 6. \][/tex]
Plugging in these values into the formula for the x-coordinate of the vertex, we get:
[tex]\[ x = -\frac{0.7}{2 \times -0.01} = -\frac{0.7}{-0.02} = 35. \][/tex]
Next, we substitute this x value back into the original equation to find the corresponding y value, which represents the highest point:
[tex]\[ y = -0.01(35)^2 + 0.7(35) + 6. \][/tex]
Calculating each term, we have:
[tex]\[ -0.01(35)^2 = -0.01 \times 1225 = -12.25, \][/tex]
[tex]\[ 0.7(35) = 24.5, \][/tex]
[tex]\[ 6 = 6. \][/tex]
Adding these together:
[tex]\[ y = -12.25 + 24.5 + 6 = 18.25. \][/tex]
Therefore, the highest point the shot put reaches is at the coordinates:
[tex]\[ (35, 18.25). \][/tex]
So, the highest point is 18.25 feet when the horizontal distance is 35 feet.
Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Your questions are important to us at Westonci.ca. Visit again for expert answers and reliable information.