Discover answers to your most pressing questions at Westonci.ca, the ultimate Q&A platform that connects you with expert solutions. Find reliable answers to your questions from a wide community of knowledgeable experts on our user-friendly Q&A platform. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.
Sagot :
Certainly! Let's solve the inequality [tex]\( x + 2y \leq 12 \)[/tex] step-by-step, assuming we need to find the maximum possible integer value for [tex]\( x \)[/tex] when [tex]\( y \)[/tex] is given.
### Step-by-Step Solution:
1. Consider the given inequality:
[tex]\[ x + 2y \leq 12 \][/tex]
2. Simplify for [tex]\( x \)[/tex]:
To find the maximum value of [tex]\( x \)[/tex], we need to isolate [tex]\( x \)[/tex] in the inequality. Subtract [tex]\( 2y \)[/tex] from both sides of the inequality:
[tex]\[ x \leq 12 - 2y \][/tex]
3. Given value of [tex]\( y \)[/tex]:
Suppose [tex]\( y \)[/tex] is provided as 3.
4. Substitute [tex]\( y \)[/tex] in the inequality:
Replace [tex]\( y \)[/tex] with 3 in the inequality:
[tex]\[ x \leq 12 - 2 \times 3 \][/tex]
5. Calculate the value on the right-hand side:
Perform the multiplication and subtraction:
[tex]\[ x \leq 12 - 6 \][/tex]
[tex]\[ x \leq 6 \][/tex]
6. Determine the maximum integer value for [tex]\( x \)[/tex]:
The maximum possible integer value for [tex]\( x \)[/tex] that satisfies the inequality [tex]\( x \leq 6 \)[/tex] is indeed 6.
So, the maximum possible integer value for [tex]\( x \)[/tex], given [tex]\( y = 3 \)[/tex], is [tex]\( x = 6 \)[/tex].
### Step-by-Step Solution:
1. Consider the given inequality:
[tex]\[ x + 2y \leq 12 \][/tex]
2. Simplify for [tex]\( x \)[/tex]:
To find the maximum value of [tex]\( x \)[/tex], we need to isolate [tex]\( x \)[/tex] in the inequality. Subtract [tex]\( 2y \)[/tex] from both sides of the inequality:
[tex]\[ x \leq 12 - 2y \][/tex]
3. Given value of [tex]\( y \)[/tex]:
Suppose [tex]\( y \)[/tex] is provided as 3.
4. Substitute [tex]\( y \)[/tex] in the inequality:
Replace [tex]\( y \)[/tex] with 3 in the inequality:
[tex]\[ x \leq 12 - 2 \times 3 \][/tex]
5. Calculate the value on the right-hand side:
Perform the multiplication and subtraction:
[tex]\[ x \leq 12 - 6 \][/tex]
[tex]\[ x \leq 6 \][/tex]
6. Determine the maximum integer value for [tex]\( x \)[/tex]:
The maximum possible integer value for [tex]\( x \)[/tex] that satisfies the inequality [tex]\( x \leq 6 \)[/tex] is indeed 6.
So, the maximum possible integer value for [tex]\( x \)[/tex], given [tex]\( y = 3 \)[/tex], is [tex]\( x = 6 \)[/tex].
Visit us again for up-to-date and reliable answers. We're always ready to assist you with your informational needs. Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. Thank you for trusting Westonci.ca. Don't forget to revisit us for more accurate and insightful answers.