At Westonci.ca, we make it easy for you to get the answers you need from a community of knowledgeable individuals. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.
Sagot :
To solve for the equation of a line that is perpendicular to [tex]\( y = 4x + 5 \)[/tex] and passes through the point [tex]\((8, 3)\)[/tex], we need to follow these steps:
1. Find the slope of the perpendicular line:
The slope of a line perpendicular to another is the negative reciprocal of the slope of the original line.
The slope [tex]\( m_1 \)[/tex] of the original line [tex]\( y = 4x + 5 \)[/tex] is 4. Therefore, the slope [tex]\( m_2 \)[/tex] of the line perpendicular to it is:
[tex]\[ m_2 = -\frac{1}{4} \][/tex]
2. Use the point-slope form to find the equation:
We use the point-slope form of a line’s equation:
[tex]\[ y - y_1 = m(x - x_1) \][/tex]
where [tex]\((x_1, y_1)\)[/tex] is a point on the line (which is (8, 3) in this case) and [tex]\( m \)[/tex] is the slope of the line.
Substituting in the known values:
[tex]\[ y - 3 = -\frac{1}{4} (x - 8) \][/tex]
3. Simplify to get the slope-intercept form [tex]\( y = mx + b \)[/tex]:
Distribute the slope on the right side:
[tex]\[ y - 3 = -\frac{1}{4} x + 2 \][/tex]
Add 3 to both sides to isolate [tex]\( y \)[/tex]:
[tex]\[ y = -\frac{1}{4} x + 2 + 3 \][/tex]
[tex]\[ y = -\frac{1}{4} x + 5 \][/tex]
Therefore, the equation of the line that is perpendicular to [tex]\( y = 4x + 5 \)[/tex] and passes through the point (8, 3) is:
[tex]\[ \boxed{y = -\frac{1}{4} x + 5} \][/tex]
This matches option A. Therefore, the correct answer is:
[tex]\[ \boxed{A. \, y = -\frac{1}{4} x + 5} \][/tex]
1. Find the slope of the perpendicular line:
The slope of a line perpendicular to another is the negative reciprocal of the slope of the original line.
The slope [tex]\( m_1 \)[/tex] of the original line [tex]\( y = 4x + 5 \)[/tex] is 4. Therefore, the slope [tex]\( m_2 \)[/tex] of the line perpendicular to it is:
[tex]\[ m_2 = -\frac{1}{4} \][/tex]
2. Use the point-slope form to find the equation:
We use the point-slope form of a line’s equation:
[tex]\[ y - y_1 = m(x - x_1) \][/tex]
where [tex]\((x_1, y_1)\)[/tex] is a point on the line (which is (8, 3) in this case) and [tex]\( m \)[/tex] is the slope of the line.
Substituting in the known values:
[tex]\[ y - 3 = -\frac{1}{4} (x - 8) \][/tex]
3. Simplify to get the slope-intercept form [tex]\( y = mx + b \)[/tex]:
Distribute the slope on the right side:
[tex]\[ y - 3 = -\frac{1}{4} x + 2 \][/tex]
Add 3 to both sides to isolate [tex]\( y \)[/tex]:
[tex]\[ y = -\frac{1}{4} x + 2 + 3 \][/tex]
[tex]\[ y = -\frac{1}{4} x + 5 \][/tex]
Therefore, the equation of the line that is perpendicular to [tex]\( y = 4x + 5 \)[/tex] and passes through the point (8, 3) is:
[tex]\[ \boxed{y = -\frac{1}{4} x + 5} \][/tex]
This matches option A. Therefore, the correct answer is:
[tex]\[ \boxed{A. \, y = -\frac{1}{4} x + 5} \][/tex]
Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Westonci.ca is here to provide the answers you seek. Return often for more expert solutions.