At Westonci.ca, we provide clear, reliable answers to all your questions. Join our vibrant community and get the solutions you need. Experience the convenience of getting reliable answers to your questions from a vast network of knowledgeable experts. Join our platform to connect with experts ready to provide precise answers to your questions in different areas.
Sagot :
To solve for the equation of a line that is perpendicular to [tex]\( y = 4x + 5 \)[/tex] and passes through the point [tex]\((8, 3)\)[/tex], we need to follow these steps:
1. Find the slope of the perpendicular line:
The slope of a line perpendicular to another is the negative reciprocal of the slope of the original line.
The slope [tex]\( m_1 \)[/tex] of the original line [tex]\( y = 4x + 5 \)[/tex] is 4. Therefore, the slope [tex]\( m_2 \)[/tex] of the line perpendicular to it is:
[tex]\[ m_2 = -\frac{1}{4} \][/tex]
2. Use the point-slope form to find the equation:
We use the point-slope form of a line’s equation:
[tex]\[ y - y_1 = m(x - x_1) \][/tex]
where [tex]\((x_1, y_1)\)[/tex] is a point on the line (which is (8, 3) in this case) and [tex]\( m \)[/tex] is the slope of the line.
Substituting in the known values:
[tex]\[ y - 3 = -\frac{1}{4} (x - 8) \][/tex]
3. Simplify to get the slope-intercept form [tex]\( y = mx + b \)[/tex]:
Distribute the slope on the right side:
[tex]\[ y - 3 = -\frac{1}{4} x + 2 \][/tex]
Add 3 to both sides to isolate [tex]\( y \)[/tex]:
[tex]\[ y = -\frac{1}{4} x + 2 + 3 \][/tex]
[tex]\[ y = -\frac{1}{4} x + 5 \][/tex]
Therefore, the equation of the line that is perpendicular to [tex]\( y = 4x + 5 \)[/tex] and passes through the point (8, 3) is:
[tex]\[ \boxed{y = -\frac{1}{4} x + 5} \][/tex]
This matches option A. Therefore, the correct answer is:
[tex]\[ \boxed{A. \, y = -\frac{1}{4} x + 5} \][/tex]
1. Find the slope of the perpendicular line:
The slope of a line perpendicular to another is the negative reciprocal of the slope of the original line.
The slope [tex]\( m_1 \)[/tex] of the original line [tex]\( y = 4x + 5 \)[/tex] is 4. Therefore, the slope [tex]\( m_2 \)[/tex] of the line perpendicular to it is:
[tex]\[ m_2 = -\frac{1}{4} \][/tex]
2. Use the point-slope form to find the equation:
We use the point-slope form of a line’s equation:
[tex]\[ y - y_1 = m(x - x_1) \][/tex]
where [tex]\((x_1, y_1)\)[/tex] is a point on the line (which is (8, 3) in this case) and [tex]\( m \)[/tex] is the slope of the line.
Substituting in the known values:
[tex]\[ y - 3 = -\frac{1}{4} (x - 8) \][/tex]
3. Simplify to get the slope-intercept form [tex]\( y = mx + b \)[/tex]:
Distribute the slope on the right side:
[tex]\[ y - 3 = -\frac{1}{4} x + 2 \][/tex]
Add 3 to both sides to isolate [tex]\( y \)[/tex]:
[tex]\[ y = -\frac{1}{4} x + 2 + 3 \][/tex]
[tex]\[ y = -\frac{1}{4} x + 5 \][/tex]
Therefore, the equation of the line that is perpendicular to [tex]\( y = 4x + 5 \)[/tex] and passes through the point (8, 3) is:
[tex]\[ \boxed{y = -\frac{1}{4} x + 5} \][/tex]
This matches option A. Therefore, the correct answer is:
[tex]\[ \boxed{A. \, y = -\frac{1}{4} x + 5} \][/tex]
We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. We're glad you visited Westonci.ca. Return anytime for updated answers from our knowledgeable team.