Get the answers you need at Westonci.ca, where our expert community is dedicated to providing you with accurate information. Join our platform to get reliable answers to your questions from a knowledgeable community of experts. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.
Sagot :
To find the correct function that fits the given conditions, we need to analyze each function and determine their behavior as [tex]\( x \)[/tex] approaches [tex]\( -\infty \)[/tex] and [tex]\( \infty \)[/tex].
### Option A: [tex]\( f(x) = \frac{x^3 - 36}{x - 6} \)[/tex]
First, simplify the function:
[tex]\[ f(x) = \frac{x^3 - 36}{x - 6} \][/tex]
Notice that [tex]\(\frac{x^3 - 36}{x - 6}\)[/tex] can be simplified for large [tex]\(x\)[/tex]:
- As [tex]\(x\)[/tex] approaches [tex]\(\infty\)[/tex], the highest power term [tex]\(x^3\)[/tex] dominates:
[tex]\[ \frac{x^3-36}{x-6} \approx \frac{x^3}{x} = x^2 \][/tex]
- As [tex]\(x\)[/tex] approaches [tex]\(-\infty\)[/tex], similarly:
[tex]\[ \frac{x^3-36}{x-6} \approx \frac{x^3}{x} = x^2 \][/tex]
In both cases, the function approaches [tex]\(\infty\)[/tex] as [tex]\(x\)[/tex] approaches both [tex]\(\infty\)[/tex] and [tex]\(-\infty\)[/tex].
### Option B: [tex]\( f(x) = \frac{p-9}{1-\frac{9}{40}} \)[/tex]
We notice that this function is actually a constant because it does not depend on [tex]\(x\)[/tex]:
[tex]\[ f(x) = \frac{p-9}{1-\frac{9}{40}} = k \][/tex]
where [tex]\(k\)[/tex] is a constant value. Since the function is constant, it does not fit the criteria given, as the value of the function does not vary as [tex]\(x\)[/tex] approaches [tex]\( \pm \infty \)[/tex].
### Option C: [tex]\( f(x) = \frac{x+9}{x} \)[/tex]
Simplify the function:
[tex]\[ f(x) = \frac{x+9}{x} = 1 + \frac{9}{x} \][/tex]
- As [tex]\( x \)[/tex] approaches [tex]\(\infty\)[/tex], [tex]\(\frac{9}{x} \)[/tex] approaches [tex]\( 0 \)[/tex], so:
[tex]\[ f(x) \approx 1 \][/tex]
- As [tex]\( x \)[/tex] approaches [tex]\(-\infty\)[/tex], [tex]\(\frac{9}{x} \)[/tex] also approaches [tex]\( 0 \)[/tex], so:
[tex]\[ f(x) \approx 1 \][/tex]
In both cases, the function approaches 1, not [tex]\(\pm \infty\)[/tex].
### Option D: [tex]\( f(x) = \frac{x-6}{x+6} \)[/tex]
Simplify the function:
[tex]\[ f(x) = \frac{x-6}{x+6} \][/tex]
- As [tex]\( x \)[/tex] approaches [tex]\(\infty\)[/tex]:
[tex]\[ f(x) = \frac{x-6}{x+6} \approx \frac{x}{x} = 1 \][/tex]
- As [tex]\( x \)[/tex] approaches [tex]\(-\infty\)[/tex]:
[tex]\[ f(x) = \frac{x-6}{x+6} \approx \frac{x}{x} = 1 \][/tex]
In both cases, the function approaches 1, not [tex]\(\pm \infty\)[/tex].
### Summary:
Only Option A [tex]\( f(x) = \frac{x^3 - 36}{x - 6} \)[/tex] does not simplify to a constant or function that approaches a finite value as [tex]\(x\)[/tex] approaches [tex]\(\pm \infty\)[/tex]. It satisfies the condition where the function approaches [tex]\( -\infty \)[/tex] as [tex]\( x \)[/tex] approaches [tex]\(-\infty\)[/tex] and [tex]\( \infty \)[/tex] as [tex]\( x \)[/tex] approaches [tex]\(\infty\)[/tex].
Thus, the correct answer is:
[tex]\[ \boxed{A} \][/tex]
### Option A: [tex]\( f(x) = \frac{x^3 - 36}{x - 6} \)[/tex]
First, simplify the function:
[tex]\[ f(x) = \frac{x^3 - 36}{x - 6} \][/tex]
Notice that [tex]\(\frac{x^3 - 36}{x - 6}\)[/tex] can be simplified for large [tex]\(x\)[/tex]:
- As [tex]\(x\)[/tex] approaches [tex]\(\infty\)[/tex], the highest power term [tex]\(x^3\)[/tex] dominates:
[tex]\[ \frac{x^3-36}{x-6} \approx \frac{x^3}{x} = x^2 \][/tex]
- As [tex]\(x\)[/tex] approaches [tex]\(-\infty\)[/tex], similarly:
[tex]\[ \frac{x^3-36}{x-6} \approx \frac{x^3}{x} = x^2 \][/tex]
In both cases, the function approaches [tex]\(\infty\)[/tex] as [tex]\(x\)[/tex] approaches both [tex]\(\infty\)[/tex] and [tex]\(-\infty\)[/tex].
### Option B: [tex]\( f(x) = \frac{p-9}{1-\frac{9}{40}} \)[/tex]
We notice that this function is actually a constant because it does not depend on [tex]\(x\)[/tex]:
[tex]\[ f(x) = \frac{p-9}{1-\frac{9}{40}} = k \][/tex]
where [tex]\(k\)[/tex] is a constant value. Since the function is constant, it does not fit the criteria given, as the value of the function does not vary as [tex]\(x\)[/tex] approaches [tex]\( \pm \infty \)[/tex].
### Option C: [tex]\( f(x) = \frac{x+9}{x} \)[/tex]
Simplify the function:
[tex]\[ f(x) = \frac{x+9}{x} = 1 + \frac{9}{x} \][/tex]
- As [tex]\( x \)[/tex] approaches [tex]\(\infty\)[/tex], [tex]\(\frac{9}{x} \)[/tex] approaches [tex]\( 0 \)[/tex], so:
[tex]\[ f(x) \approx 1 \][/tex]
- As [tex]\( x \)[/tex] approaches [tex]\(-\infty\)[/tex], [tex]\(\frac{9}{x} \)[/tex] also approaches [tex]\( 0 \)[/tex], so:
[tex]\[ f(x) \approx 1 \][/tex]
In both cases, the function approaches 1, not [tex]\(\pm \infty\)[/tex].
### Option D: [tex]\( f(x) = \frac{x-6}{x+6} \)[/tex]
Simplify the function:
[tex]\[ f(x) = \frac{x-6}{x+6} \][/tex]
- As [tex]\( x \)[/tex] approaches [tex]\(\infty\)[/tex]:
[tex]\[ f(x) = \frac{x-6}{x+6} \approx \frac{x}{x} = 1 \][/tex]
- As [tex]\( x \)[/tex] approaches [tex]\(-\infty\)[/tex]:
[tex]\[ f(x) = \frac{x-6}{x+6} \approx \frac{x}{x} = 1 \][/tex]
In both cases, the function approaches 1, not [tex]\(\pm \infty\)[/tex].
### Summary:
Only Option A [tex]\( f(x) = \frac{x^3 - 36}{x - 6} \)[/tex] does not simplify to a constant or function that approaches a finite value as [tex]\(x\)[/tex] approaches [tex]\(\pm \infty\)[/tex]. It satisfies the condition where the function approaches [tex]\( -\infty \)[/tex] as [tex]\( x \)[/tex] approaches [tex]\(-\infty\)[/tex] and [tex]\( \infty \)[/tex] as [tex]\( x \)[/tex] approaches [tex]\(\infty\)[/tex].
Thus, the correct answer is:
[tex]\[ \boxed{A} \][/tex]
Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. Find reliable answers at Westonci.ca. Visit us again for the latest updates and expert advice.