Westonci.ca is the premier destination for reliable answers to your questions, provided by a community of experts. Get the answers you need quickly and accurately from a dedicated community of experts on our Q&A platform. Join our platform to connect with experts ready to provide precise answers to your questions in different areas.
Sagot :
To determine the value of [tex]\( n \)[/tex] for which [tex]\( f(n) = 20 \)[/tex] given the function [tex]\( f(x) \)[/tex], we first need to find the equation of the linear function. Here is the systematic approach to solve this problem:
1. Identify the given points:
We are given two points on the line:
[tex]\[ (-4, -25) \][/tex]
[tex]\[ (-1, -10) \][/tex]
2. Calculate the slope (m) of the linear function. The slope [tex]\( m \)[/tex] can be found using the formula for the slope between two points [tex]\((x_1, y_1)\)[/tex] and [tex]\((x_2, y_2)\)[/tex]:
[tex]\[ m = \frac{y_2 - y_1}{x_2 - x_1} \][/tex]
Plugging in the given points, we get:
[tex]\[ m = \frac{-10 - (-25)}{-1 - (-4)} = \frac{-10 + 25}{-1 + 4} = \frac{15}{3} = 5 \][/tex]
3. Formulate the equation of the line using the point-slope form, which states [tex]\( y - y_1 = m(x - x_1) \)[/tex]. Using the slope [tex]\( m = 5 \)[/tex] and one of the points [tex]\((x_1, y_1) = (-4, -25)\)[/tex]:
[tex]\[ y - (-25) = 5(x - (-4)) \][/tex]
Simplifying this, we get:
[tex]\[ y + 25 = 5(x + 4) \][/tex]
[tex]\[ y + 25 = 5x + 20 \][/tex]
[tex]\[ y = 5x + 20 - 25 \][/tex]
[tex]\[ y = 5x - 5 \][/tex]
4. Substitute [tex]\( y = 20 \)[/tex] into the equation [tex]\( y = 5x - 5 \)[/tex] to solve for [tex]\( x \)[/tex]:
[tex]\[ 20 = 5x - 5 \][/tex]
[tex]\[ 20 + 5 = 5x \][/tex]
[tex]\[ 25 = 5x \][/tex]
[tex]\[ x = \frac{25}{5} = 5 \][/tex]
Therefore, the value of [tex]\( n \)[/tex] is [tex]\(\boxed{5}\)[/tex].
1. Identify the given points:
We are given two points on the line:
[tex]\[ (-4, -25) \][/tex]
[tex]\[ (-1, -10) \][/tex]
2. Calculate the slope (m) of the linear function. The slope [tex]\( m \)[/tex] can be found using the formula for the slope between two points [tex]\((x_1, y_1)\)[/tex] and [tex]\((x_2, y_2)\)[/tex]:
[tex]\[ m = \frac{y_2 - y_1}{x_2 - x_1} \][/tex]
Plugging in the given points, we get:
[tex]\[ m = \frac{-10 - (-25)}{-1 - (-4)} = \frac{-10 + 25}{-1 + 4} = \frac{15}{3} = 5 \][/tex]
3. Formulate the equation of the line using the point-slope form, which states [tex]\( y - y_1 = m(x - x_1) \)[/tex]. Using the slope [tex]\( m = 5 \)[/tex] and one of the points [tex]\((x_1, y_1) = (-4, -25)\)[/tex]:
[tex]\[ y - (-25) = 5(x - (-4)) \][/tex]
Simplifying this, we get:
[tex]\[ y + 25 = 5(x + 4) \][/tex]
[tex]\[ y + 25 = 5x + 20 \][/tex]
[tex]\[ y = 5x + 20 - 25 \][/tex]
[tex]\[ y = 5x - 5 \][/tex]
4. Substitute [tex]\( y = 20 \)[/tex] into the equation [tex]\( y = 5x - 5 \)[/tex] to solve for [tex]\( x \)[/tex]:
[tex]\[ 20 = 5x - 5 \][/tex]
[tex]\[ 20 + 5 = 5x \][/tex]
[tex]\[ 25 = 5x \][/tex]
[tex]\[ x = \frac{25}{5} = 5 \][/tex]
Therefore, the value of [tex]\( n \)[/tex] is [tex]\(\boxed{5}\)[/tex].
Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Get the answers you need at Westonci.ca. Stay informed with our latest expert advice.