Welcome to Westonci.ca, the place where your questions are answered by a community of knowledgeable contributors. Get immediate and reliable answers to your questions from a community of experienced experts on our platform. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform.

Select the correct answer.

The points [tex]\( J(-8,9) \)[/tex] and [tex]\( K(-2,-5) \)[/tex] are endpoints of a diameter of circle [tex]\( C \)[/tex]. Which equation represents circle [tex]\( C \)[/tex]?

A. [tex]\((x-5)^2+(y+2)^2=58\)[/tex]

B. [tex]\((x-5)^2+(y+2)^2=232\)[/tex]

C. [tex]\((x+5)^2+(y-2)^2=58\)[/tex]

D. [tex]\((x+5)^2+(y-2)^2=232\)[/tex]

Sagot :

To determine the correct equation for the circle [tex]\( C \)[/tex] with endpoints [tex]\( J(-8, 9) \)[/tex] and [tex]\( K(-2, -5) \)[/tex] of its diameter, we need to follow these steps:

1. Find the center of the circle, which is the midpoint of the diameter.

The midpoint [tex]\((x, y)\)[/tex] of a segment with endpoints [tex]\((x_1, y_1)\)[/tex] and [tex]\((x_2, y_2)\)[/tex] is calculated as:
[tex]\[ \left( \frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2} \right) \][/tex]

For endpoints [tex]\( J(-8, 9) \)[/tex] and [tex]\( K(-2, -5) \)[/tex], we have:
[tex]\[ \text{Center } = \left( \frac{-8 + (-2)}{2}, \frac{9 + (-5)}{2} \right) = \left( \frac{-10}{2}, \frac{4}{2} \right) = (-5, 2) \][/tex]

2. Calculate the radius of the circle.

The radius is half the length of the diameter. The length of a segment with endpoints [tex]\((x_1, y_1)\)[/tex] and [tex]\((x_2, y_2)\)[/tex] can be found using the distance formula:
[tex]\[ \text{Distance} = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2} \][/tex]

For [tex]\( J(-8, 9) \)[/tex] and [tex]\( K(-2, -5) \)[/tex], we find:
[tex]\[ \text{Distance} = \sqrt{((-2) - (-8))^2 + ((-5) - 9)^2} = \sqrt{(6)^2 + (-14)^2} = \sqrt{36 + 196} = \sqrt{232} \][/tex]

Therefore, the radius [tex]\( r \)[/tex] is:
[tex]\[ r = \frac{\sqrt{232}}{2} = \sqrt{58} \][/tex]

3. Write the equation of the circle.

The general equation of a circle with center [tex]\((h, k)\)[/tex] and radius [tex]\( r \)[/tex] is:
[tex]\[ (x - h)^2 + (y - k)^2 = r^2 \][/tex]

Here, the center is [tex]\((-5, 2)\)[/tex] and the radius [tex]\( r = \sqrt{58} \)[/tex]. Then:
[tex]\[ (x + 5)^2 + (y - 2)^2 = (\sqrt{58})^2 = 58 \][/tex]

So, the equation of the circle [tex]\( C \)[/tex] is:
[tex]\[ (x + 5)^2 + (y - 2)^2 = 58 \][/tex]

Therefore, the correct choice is:
C. [tex]\((x+5)^2+(y-2)^2=58\)[/tex]
Thank you for visiting our platform. We hope you found the answers you were looking for. Come back anytime you need more information. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Stay curious and keep coming back to Westonci.ca for answers to all your burning questions.