Looking for answers? Westonci.ca is your go-to Q&A platform, offering quick, trustworthy responses from a community of experts. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.
Sagot :
To rewrite the given exponential equation [tex]\( 4 e^x = 16 \)[/tex] as a logarithmic equation, follow these steps:
1. Isolate the exponential term:
[tex]\[ e^x = \frac{16}{4} \][/tex]
Simplify the right side:
[tex]\[ e^x = 4 \][/tex]
2. Take the natural logarithm (ln) of both sides:
[tex]\[ \ln(e^x) = \ln(4) \][/tex]
3. Apply the logarithmic identity [tex]\(\ln(e^x) = x \cdot \ln(e)\)[/tex]:
[tex]\[ x \cdot \ln(e) = \ln(4) \][/tex]
4. Since [tex]\(\ln(e)\)[/tex] is 1, the equation simplifies to:
[tex]\[ x = \ln(4) \][/tex]
Therefore, the logarithmic equation is:
[tex]\[ x = \ln(4) \][/tex]
1. Isolate the exponential term:
[tex]\[ e^x = \frac{16}{4} \][/tex]
Simplify the right side:
[tex]\[ e^x = 4 \][/tex]
2. Take the natural logarithm (ln) of both sides:
[tex]\[ \ln(e^x) = \ln(4) \][/tex]
3. Apply the logarithmic identity [tex]\(\ln(e^x) = x \cdot \ln(e)\)[/tex]:
[tex]\[ x \cdot \ln(e) = \ln(4) \][/tex]
4. Since [tex]\(\ln(e)\)[/tex] is 1, the equation simplifies to:
[tex]\[ x = \ln(4) \][/tex]
Therefore, the logarithmic equation is:
[tex]\[ x = \ln(4) \][/tex]
We hope this information was helpful. Feel free to return anytime for more answers to your questions and concerns. Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Thank you for visiting Westonci.ca. Stay informed by coming back for more detailed answers.