Welcome to Westonci.ca, where finding answers to your questions is made simple by our community of experts. Get immediate answers to your questions from a wide network of experienced professionals on our Q&A platform. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform.
Sagot :
Alright, let's break down the expression [tex]\(4x^3 - 3z^2\)[/tex] step by step.
### Step 1: Understanding the Terms
Firstly, the expression is made up of two terms: [tex]\(4x^3\)[/tex] and [tex]\(-3z^2\)[/tex].
- [tex]\(4x^3\)[/tex]: This term represents 4 times the cube of [tex]\(x\)[/tex].
- [tex]\(-3z^2\)[/tex]: This term represents -3 times the square of [tex]\(z\)[/tex].
### Step 2: Analyzing the Expression Structure
Let's analyze what each part of the expression means:
- The coefficient of [tex]\(x^3\)[/tex] is 4. This means if [tex]\(x\)[/tex] is some number [tex]\(a\)[/tex], then [tex]\(4x^3\)[/tex] will be [tex]\(4a^3\)[/tex].
- The coefficient of [tex]\(z^2\)[/tex] is -3. This means if [tex]\(z\)[/tex] is some number [tex]\(b\)[/tex], then [tex]\(-3z^2\)[/tex] will be [tex]\(-3b^2\)[/tex].
### Step 3: Simplifying and Plugging Values
If you need to evaluate this expression for particular values of [tex]\(x\)[/tex] and [tex]\(z\)[/tex], just substitute those values into the expression and simplify.
For example, if [tex]\(x\)[/tex] = 2 and [tex]\(z\)[/tex] = 1, you would substitute these values in as follows:
1. Compute [tex]\(x^3\)[/tex]:
[tex]\[ (2)^3 = 8 \][/tex]
2. Multiply by 4:
[tex]\[ 4 \times 8 = 32 \][/tex]
3. Compute [tex]\(z^2\)[/tex]:
[tex]\[ (1)^2 = 1 \][/tex]
4. Multiply by -3:
[tex]\[ -3 \times 1 = -3 \][/tex]
5. Combine the results:
[tex]\[ 32 - 3 = 29 \][/tex]
Thus, the expression [tex]\(4x^3 - 3z^2\)[/tex] evaluates to 29 when [tex]\(x = 2\)[/tex] and [tex]\(z = 1\)[/tex].
### Step 4: General Form
However, without specific values of [tex]\(x\)[/tex] and [tex]\(z\)[/tex], the expression [tex]\(4x^3 - 3z^2\)[/tex] represents a combination of operations on the variables [tex]\(x\)[/tex] and [tex]\(z\)[/tex], and this is the simplest form it can be presented in.
To sum up:
- The expression is composed of the terms [tex]\(4x^3\)[/tex] and [tex]\(-3z^2\)[/tex].
- These terms involve raising [tex]\(x\)[/tex] to the third power, multiplying by 4, and raising [tex]\(z\)[/tex] to the second power, multiplying by -3.
- The final result is a combination of these two terms: [tex]\(4x^3 - 3z^2\)[/tex], which cannot be simplified further without specific values for [tex]\(x\)[/tex] and [tex]\(z\)[/tex].
Therefore, the given expression [tex]\(4x^3 - 3z^2\)[/tex] is fully simplified and correctly structured.
### Step 1: Understanding the Terms
Firstly, the expression is made up of two terms: [tex]\(4x^3\)[/tex] and [tex]\(-3z^2\)[/tex].
- [tex]\(4x^3\)[/tex]: This term represents 4 times the cube of [tex]\(x\)[/tex].
- [tex]\(-3z^2\)[/tex]: This term represents -3 times the square of [tex]\(z\)[/tex].
### Step 2: Analyzing the Expression Structure
Let's analyze what each part of the expression means:
- The coefficient of [tex]\(x^3\)[/tex] is 4. This means if [tex]\(x\)[/tex] is some number [tex]\(a\)[/tex], then [tex]\(4x^3\)[/tex] will be [tex]\(4a^3\)[/tex].
- The coefficient of [tex]\(z^2\)[/tex] is -3. This means if [tex]\(z\)[/tex] is some number [tex]\(b\)[/tex], then [tex]\(-3z^2\)[/tex] will be [tex]\(-3b^2\)[/tex].
### Step 3: Simplifying and Plugging Values
If you need to evaluate this expression for particular values of [tex]\(x\)[/tex] and [tex]\(z\)[/tex], just substitute those values into the expression and simplify.
For example, if [tex]\(x\)[/tex] = 2 and [tex]\(z\)[/tex] = 1, you would substitute these values in as follows:
1. Compute [tex]\(x^3\)[/tex]:
[tex]\[ (2)^3 = 8 \][/tex]
2. Multiply by 4:
[tex]\[ 4 \times 8 = 32 \][/tex]
3. Compute [tex]\(z^2\)[/tex]:
[tex]\[ (1)^2 = 1 \][/tex]
4. Multiply by -3:
[tex]\[ -3 \times 1 = -3 \][/tex]
5. Combine the results:
[tex]\[ 32 - 3 = 29 \][/tex]
Thus, the expression [tex]\(4x^3 - 3z^2\)[/tex] evaluates to 29 when [tex]\(x = 2\)[/tex] and [tex]\(z = 1\)[/tex].
### Step 4: General Form
However, without specific values of [tex]\(x\)[/tex] and [tex]\(z\)[/tex], the expression [tex]\(4x^3 - 3z^2\)[/tex] represents a combination of operations on the variables [tex]\(x\)[/tex] and [tex]\(z\)[/tex], and this is the simplest form it can be presented in.
To sum up:
- The expression is composed of the terms [tex]\(4x^3\)[/tex] and [tex]\(-3z^2\)[/tex].
- These terms involve raising [tex]\(x\)[/tex] to the third power, multiplying by 4, and raising [tex]\(z\)[/tex] to the second power, multiplying by -3.
- The final result is a combination of these two terms: [tex]\(4x^3 - 3z^2\)[/tex], which cannot be simplified further without specific values for [tex]\(x\)[/tex] and [tex]\(z\)[/tex].
Therefore, the given expression [tex]\(4x^3 - 3z^2\)[/tex] is fully simplified and correctly structured.
Thanks for stopping by. We are committed to providing the best answers for all your questions. See you again soon. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Discover more at Westonci.ca. Return for the latest expert answers and updates on various topics.