Welcome to Westonci.ca, where curiosity meets expertise. Ask any question and receive fast, accurate answers from our knowledgeable community. Join our platform to connect with experts ready to provide precise answers to your questions in different areas. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.
Sagot :
Let's go through the problem step-by-step:
a) Determine the null and alternative hypotheses.
- The null hypothesis ([tex]\(H_0\)[/tex]) represents the status quo or the current accepted value. In this case, it states that 71% of college students work.
[tex]\[ H_0: p = 0.71 \][/tex]
- The alternative hypothesis ([tex]\(H_a\)[/tex]) represents the claim being tested. The researcher thinks the percentage of college students who work has changed. So, the alternative hypothesis is:
[tex]\[ H_a: p \neq 0.71 \][/tex]
b) Determine the test statistic. Round to two decimals.
- To find the test statistic, we use the formula for the z-score in the context of proportions:
[tex]\[ z = \frac{\hat{p} - p_0}{\sqrt{\frac{p_0 (1 - p_0)}{n}}} \][/tex]
where:
[tex]\(\hat{p}\)[/tex] = sample proportion
[tex]\(p_0\)[/tex] = population proportion
[tex]\(n\)[/tex] = sample size
- Given:
[tex]\[ \hat{p} = \frac{91}{110} = 0.8273 \][/tex]
[tex]\[ p_0 = 0.71 \][/tex]
[tex]\[ n = 110 \][/tex]
- Calculating the standard error:
[tex]\[ SE = \sqrt{\frac{0.71 \times (1 - 0.71)}{110}} \approx 0.0425 \][/tex]
- Calculating the z-score:
[tex]\[ z = \frac{0.8273 - 0.71}{0.0425} \approx 2.76 \][/tex]
c) Find the p-value. Round to 4 decimals.
- To find the p-value associated with the calculated z-score for a two-tailed test:
[tex]\[ p\text{-value} = 2 \times P(Z > 2.76) \][/tex]
- Using standard normal distribution tables or computational tools, we find:
[tex]\[ p\text{-value} \approx 0.0057 \][/tex]
d) Make a decision.
- The significance level ([tex]\(\alpha\)[/tex]) is 0.01. We compare the p-value to the significance level:
[tex]\[ 0.0057 < 0.01 \][/tex]
- Since the p-value is less than the significance level, we reject the null hypothesis.
e) Write the conclusion.
- Given that we rejected the null hypothesis, we conclude that:
[tex]\[ \text{There is sufficient evidence to support the claim that the percentage of college students who work is different than 71\%.} \][/tex]
Summary:
a) [tex]\(H_0: p = 0.71\)[/tex], [tex]\(H_a: p \neq 0.71\)[/tex]
b) [tex]\(z = 2.76\)[/tex]
c) [tex]\(p\text{-value} = 0.0057\)[/tex]
d) Reject the null hypothesis
e) There is sufficient evidence to support the claim that the percentage of college students who work is different than 71\%.
a) Determine the null and alternative hypotheses.
- The null hypothesis ([tex]\(H_0\)[/tex]) represents the status quo or the current accepted value. In this case, it states that 71% of college students work.
[tex]\[ H_0: p = 0.71 \][/tex]
- The alternative hypothesis ([tex]\(H_a\)[/tex]) represents the claim being tested. The researcher thinks the percentage of college students who work has changed. So, the alternative hypothesis is:
[tex]\[ H_a: p \neq 0.71 \][/tex]
b) Determine the test statistic. Round to two decimals.
- To find the test statistic, we use the formula for the z-score in the context of proportions:
[tex]\[ z = \frac{\hat{p} - p_0}{\sqrt{\frac{p_0 (1 - p_0)}{n}}} \][/tex]
where:
[tex]\(\hat{p}\)[/tex] = sample proportion
[tex]\(p_0\)[/tex] = population proportion
[tex]\(n\)[/tex] = sample size
- Given:
[tex]\[ \hat{p} = \frac{91}{110} = 0.8273 \][/tex]
[tex]\[ p_0 = 0.71 \][/tex]
[tex]\[ n = 110 \][/tex]
- Calculating the standard error:
[tex]\[ SE = \sqrt{\frac{0.71 \times (1 - 0.71)}{110}} \approx 0.0425 \][/tex]
- Calculating the z-score:
[tex]\[ z = \frac{0.8273 - 0.71}{0.0425} \approx 2.76 \][/tex]
c) Find the p-value. Round to 4 decimals.
- To find the p-value associated with the calculated z-score for a two-tailed test:
[tex]\[ p\text{-value} = 2 \times P(Z > 2.76) \][/tex]
- Using standard normal distribution tables or computational tools, we find:
[tex]\[ p\text{-value} \approx 0.0057 \][/tex]
d) Make a decision.
- The significance level ([tex]\(\alpha\)[/tex]) is 0.01. We compare the p-value to the significance level:
[tex]\[ 0.0057 < 0.01 \][/tex]
- Since the p-value is less than the significance level, we reject the null hypothesis.
e) Write the conclusion.
- Given that we rejected the null hypothesis, we conclude that:
[tex]\[ \text{There is sufficient evidence to support the claim that the percentage of college students who work is different than 71\%.} \][/tex]
Summary:
a) [tex]\(H_0: p = 0.71\)[/tex], [tex]\(H_a: p \neq 0.71\)[/tex]
b) [tex]\(z = 2.76\)[/tex]
c) [tex]\(p\text{-value} = 0.0057\)[/tex]
d) Reject the null hypothesis
e) There is sufficient evidence to support the claim that the percentage of college students who work is different than 71\%.
Thank you for choosing our service. We're dedicated to providing the best answers for all your questions. Visit us again. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. We're here to help at Westonci.ca. Keep visiting for the best answers to your questions.