Westonci.ca offers fast, accurate answers to your questions. Join our community and get the insights you need now. Our Q&A platform offers a seamless experience for finding reliable answers from experts in various disciplines. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals.
Sagot :
Let's go through the problem step-by-step:
a) Determine the null and alternative hypotheses.
- The null hypothesis ([tex]\(H_0\)[/tex]) represents the status quo or the current accepted value. In this case, it states that 71% of college students work.
[tex]\[ H_0: p = 0.71 \][/tex]
- The alternative hypothesis ([tex]\(H_a\)[/tex]) represents the claim being tested. The researcher thinks the percentage of college students who work has changed. So, the alternative hypothesis is:
[tex]\[ H_a: p \neq 0.71 \][/tex]
b) Determine the test statistic. Round to two decimals.
- To find the test statistic, we use the formula for the z-score in the context of proportions:
[tex]\[ z = \frac{\hat{p} - p_0}{\sqrt{\frac{p_0 (1 - p_0)}{n}}} \][/tex]
where:
[tex]\(\hat{p}\)[/tex] = sample proportion
[tex]\(p_0\)[/tex] = population proportion
[tex]\(n\)[/tex] = sample size
- Given:
[tex]\[ \hat{p} = \frac{91}{110} = 0.8273 \][/tex]
[tex]\[ p_0 = 0.71 \][/tex]
[tex]\[ n = 110 \][/tex]
- Calculating the standard error:
[tex]\[ SE = \sqrt{\frac{0.71 \times (1 - 0.71)}{110}} \approx 0.0425 \][/tex]
- Calculating the z-score:
[tex]\[ z = \frac{0.8273 - 0.71}{0.0425} \approx 2.76 \][/tex]
c) Find the p-value. Round to 4 decimals.
- To find the p-value associated with the calculated z-score for a two-tailed test:
[tex]\[ p\text{-value} = 2 \times P(Z > 2.76) \][/tex]
- Using standard normal distribution tables or computational tools, we find:
[tex]\[ p\text{-value} \approx 0.0057 \][/tex]
d) Make a decision.
- The significance level ([tex]\(\alpha\)[/tex]) is 0.01. We compare the p-value to the significance level:
[tex]\[ 0.0057 < 0.01 \][/tex]
- Since the p-value is less than the significance level, we reject the null hypothesis.
e) Write the conclusion.
- Given that we rejected the null hypothesis, we conclude that:
[tex]\[ \text{There is sufficient evidence to support the claim that the percentage of college students who work is different than 71\%.} \][/tex]
Summary:
a) [tex]\(H_0: p = 0.71\)[/tex], [tex]\(H_a: p \neq 0.71\)[/tex]
b) [tex]\(z = 2.76\)[/tex]
c) [tex]\(p\text{-value} = 0.0057\)[/tex]
d) Reject the null hypothesis
e) There is sufficient evidence to support the claim that the percentage of college students who work is different than 71\%.
a) Determine the null and alternative hypotheses.
- The null hypothesis ([tex]\(H_0\)[/tex]) represents the status quo or the current accepted value. In this case, it states that 71% of college students work.
[tex]\[ H_0: p = 0.71 \][/tex]
- The alternative hypothesis ([tex]\(H_a\)[/tex]) represents the claim being tested. The researcher thinks the percentage of college students who work has changed. So, the alternative hypothesis is:
[tex]\[ H_a: p \neq 0.71 \][/tex]
b) Determine the test statistic. Round to two decimals.
- To find the test statistic, we use the formula for the z-score in the context of proportions:
[tex]\[ z = \frac{\hat{p} - p_0}{\sqrt{\frac{p_0 (1 - p_0)}{n}}} \][/tex]
where:
[tex]\(\hat{p}\)[/tex] = sample proportion
[tex]\(p_0\)[/tex] = population proportion
[tex]\(n\)[/tex] = sample size
- Given:
[tex]\[ \hat{p} = \frac{91}{110} = 0.8273 \][/tex]
[tex]\[ p_0 = 0.71 \][/tex]
[tex]\[ n = 110 \][/tex]
- Calculating the standard error:
[tex]\[ SE = \sqrt{\frac{0.71 \times (1 - 0.71)}{110}} \approx 0.0425 \][/tex]
- Calculating the z-score:
[tex]\[ z = \frac{0.8273 - 0.71}{0.0425} \approx 2.76 \][/tex]
c) Find the p-value. Round to 4 decimals.
- To find the p-value associated with the calculated z-score for a two-tailed test:
[tex]\[ p\text{-value} = 2 \times P(Z > 2.76) \][/tex]
- Using standard normal distribution tables or computational tools, we find:
[tex]\[ p\text{-value} \approx 0.0057 \][/tex]
d) Make a decision.
- The significance level ([tex]\(\alpha\)[/tex]) is 0.01. We compare the p-value to the significance level:
[tex]\[ 0.0057 < 0.01 \][/tex]
- Since the p-value is less than the significance level, we reject the null hypothesis.
e) Write the conclusion.
- Given that we rejected the null hypothesis, we conclude that:
[tex]\[ \text{There is sufficient evidence to support the claim that the percentage of college students who work is different than 71\%.} \][/tex]
Summary:
a) [tex]\(H_0: p = 0.71\)[/tex], [tex]\(H_a: p \neq 0.71\)[/tex]
b) [tex]\(z = 2.76\)[/tex]
c) [tex]\(p\text{-value} = 0.0057\)[/tex]
d) Reject the null hypothesis
e) There is sufficient evidence to support the claim that the percentage of college students who work is different than 71\%.
We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. Stay curious and keep coming back to Westonci.ca for answers to all your burning questions.