Welcome to Westonci.ca, where your questions are met with accurate answers from a community of experts and enthusiasts. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform.
Sagot :
To solve the given question, let's understand the areas of a parallelogram and a rectangle with the same side lengths, [tex]\(a\)[/tex] and [tex]\(b\)[/tex].
1. Area of a Rectangle:
- For a rectangle, the formula for the area is straightforward:
[tex]\[ B = a \times b \][/tex]
where [tex]\(a\)[/tex] and [tex]\(b\)[/tex] are the lengths of the sides of the rectangle.
2. Area of a Parallelogram:
- For a parallelogram, the formula for the area depends on the base and the height (the perpendicular distance between the bases). If we consider [tex]\(a\)[/tex] as the base and [tex]\(h\)[/tex] as the height, the area [tex]\(A\)[/tex] is expressed as:
[tex]\[ A = a \times h \][/tex]
- Note that the height [tex]\(h\)[/tex] will generally be less than or equal to the side length [tex]\(b\)[/tex] of the parallelogram because the height is the perpendicular dropped from the opposite vertex to the base [tex]\(a\)[/tex], and it doesn't exceed the slant height [tex]\(b\)[/tex].
3. Comparison of Areas:
- From the above understanding:
[tex]\[ A = a \times h \quad \text{and} \quad B = a \times b \][/tex]
- Since the height [tex]\(h\)[/tex] is always less than or equal to the side length [tex]\(b\)[/tex], i.e., [tex]\(h \leq b\)[/tex], it follows:
[tex]\[ a \times h \leq a \times b \][/tex]
which means:
[tex]\[ A \leq B \][/tex]
Given the options:
1. [tex]\(A > B\)[/tex]
2. [tex]\(A = B\)[/tex]
3. [tex]\(A < B\)[/tex]
4. [tex]\(A \geq B\)[/tex]
Given the inequality [tex]\(A \leq B\)[/tex], the correct choice is:
[tex]\[ A \geq B \][/tex]
Thus, the answer is:
[tex]\[ \boxed{4} \][/tex]
1. Area of a Rectangle:
- For a rectangle, the formula for the area is straightforward:
[tex]\[ B = a \times b \][/tex]
where [tex]\(a\)[/tex] and [tex]\(b\)[/tex] are the lengths of the sides of the rectangle.
2. Area of a Parallelogram:
- For a parallelogram, the formula for the area depends on the base and the height (the perpendicular distance between the bases). If we consider [tex]\(a\)[/tex] as the base and [tex]\(h\)[/tex] as the height, the area [tex]\(A\)[/tex] is expressed as:
[tex]\[ A = a \times h \][/tex]
- Note that the height [tex]\(h\)[/tex] will generally be less than or equal to the side length [tex]\(b\)[/tex] of the parallelogram because the height is the perpendicular dropped from the opposite vertex to the base [tex]\(a\)[/tex], and it doesn't exceed the slant height [tex]\(b\)[/tex].
3. Comparison of Areas:
- From the above understanding:
[tex]\[ A = a \times h \quad \text{and} \quad B = a \times b \][/tex]
- Since the height [tex]\(h\)[/tex] is always less than or equal to the side length [tex]\(b\)[/tex], i.e., [tex]\(h \leq b\)[/tex], it follows:
[tex]\[ a \times h \leq a \times b \][/tex]
which means:
[tex]\[ A \leq B \][/tex]
Given the options:
1. [tex]\(A > B\)[/tex]
2. [tex]\(A = B\)[/tex]
3. [tex]\(A < B\)[/tex]
4. [tex]\(A \geq B\)[/tex]
Given the inequality [tex]\(A \leq B\)[/tex], the correct choice is:
[tex]\[ A \geq B \][/tex]
Thus, the answer is:
[tex]\[ \boxed{4} \][/tex]
We hope this information was helpful. Feel free to return anytime for more answers to your questions and concerns. We appreciate your time. Please revisit us for more reliable answers to any questions you may have. Thank you for visiting Westonci.ca. Stay informed by coming back for more detailed answers.