At Westonci.ca, we connect you with the answers you need, thanks to our active and informed community. Join our Q&A platform to connect with experts dedicated to providing precise answers to your questions in different areas. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform.

Which of the following is the complete list of roots for the polynomial function [tex]f(x) = (x^2 + 2x - 15)(x^2 + 8x + 17)[/tex]?

A. [tex]-5, 3[/tex]
B. [tex]-5, 3, -4 + 1, -4 - 1[/tex]
C. [tex]-5, 3, -4 + i, -4 - i[/tex]
D. [tex]-4 + 1, -4 - 1[/tex]


Sagot :

To find the roots of the polynomial function [tex]\( f(x) = \left(x^2 + 2x - 15\right)\left(x^2 + 8x + 17\right) \)[/tex], we need to solve for the values of [tex]\( x \)[/tex] that make [tex]\( f(x) = 0 \)[/tex].

Let's break down the factors individually:

1. The first polynomial factor is [tex]\( x^2 + 2x - 15 \)[/tex]. We can factor this quadratic expression to find its roots:
[tex]\[ x^2 + 2x - 15 = (x + 5)(x - 3) \][/tex]
Setting each factor equal to zero gives us:
[tex]\[ x + 5 = 0 \quad \Rightarrow \quad x = -5 \][/tex]
[tex]\[ x - 3 = 0 \quad \Rightarrow \quad x = 3 \][/tex]
Therefore, the roots of the first polynomial factor are [tex]\( x = -5 \)[/tex] and [tex]\( x = 3 \)[/tex].

2. The second polynomial factor is [tex]\( x^2 + 8x + 17 \)[/tex]. To find its roots, we use the quadratic formula [tex]\( x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \)[/tex], where [tex]\( a = 1 \)[/tex], [tex]\( b = 8 \)[/tex], and [tex]\( c = 17 \)[/tex]:
[tex]\[ x = \frac{-8 \pm \sqrt{8^2 - 4 \cdot 1 \cdot 17}}{2 \cdot 1} \][/tex]
[tex]\[ x = \frac{-8 \pm \sqrt{64 - 68}}{2} \][/tex]
[tex]\[ x = \frac{-8 \pm \sqrt{-4}}{2} \][/tex]
Since [tex]\(\sqrt{-4} = 2i\)[/tex]:
[tex]\[ x = \frac{-8 \pm 2i}{2} \][/tex]
Simplifying this, we get:
[tex]\[ x = -4 \pm i \][/tex]
Therefore, the roots of the second polynomial factor are [tex]\( x = -4 + i \)[/tex] and [tex]\( x = -4 - i \)[/tex].

Combining both sets of roots, the complete list of roots for the polynomial [tex]\( f(x) = \left(x^2 + 2x - 15\right)\left(x^2 + 8x + 17\right) \)[/tex] is:
[tex]\[ x = -5, \quad 3, \quad -4 + i, \quad -4 - i \][/tex]

Among the given options, the correct complete list of roots is:
[tex]\[ -5, \; 3, \; -4 + i, \; -4 - i \][/tex]
Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Westonci.ca is committed to providing accurate answers. Come back soon for more trustworthy information.