Discover the answers to your questions at Westonci.ca, where experts share their knowledge and insights with you. Our platform offers a seamless experience for finding reliable answers from a network of experienced professionals. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.

Find the (a) period, (b) phase shift (if any), and (c) range of the following function.

[tex]\[ y = -5 \sec \left(x + \frac{\pi}{4}\right) \][/tex]

(a) The period is [tex]$\square$[/tex] . (Type an exact answer in terms of [tex]$\pi$[/tex].)

Sagot :

Let's analyze the function [tex]\( y = -5 \sec \left( x + \frac{\pi}{4} \right) \)[/tex] to find its period, phase shift, and range.

### (a) Find the period

The secant function, [tex]\(\sec(x)\)[/tex], has a base period of [tex]\(2\pi\)[/tex]. The period of the transformed secant function [tex]\( \sec \left( x + \frac{\pi}{4} \right) \)[/tex] does not change due to the horizontal shift inside the function. Therefore, the period of the given function remains the same as the base period of the secant function.

So, the period of [tex]\( y = -5 \sec \left( x + \frac{\pi}{4} \right) \)[/tex] is:
[tex]\[ 2\pi \][/tex]