Welcome to Westonci.ca, where curiosity meets expertise. Ask any question and receive fast, accurate answers from our knowledgeable community. Our platform connects you with professionals ready to provide precise answers to all your questions in various areas of expertise. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.
Sagot :
To determine the domain of the function [tex]\( y = \sqrt{x + 7} + 5 \)[/tex], we need to identify the set of all possible values for [tex]\( x \)[/tex] that make the function well-defined.
The function involves a square root, [tex]\(\sqrt{x + 7}\)[/tex]. For the square root function to be defined, its radicand (the expression inside the square root) must be non-negative. Therefore, we need:
[tex]\[ x + 7 \geq 0 \][/tex]
Solving this inequality for [tex]\( x \)[/tex], we subtract 7 from both sides:
[tex]\[ x \geq -7 \][/tex]
This means that [tex]\( x \)[/tex] must be greater than or equal to [tex]\(-7\)[/tex] for the expression [tex]\(\sqrt{x + 7}\)[/tex] to be defined. Once we have this condition, the entire function [tex]\( y = \sqrt{x + 7} + 5 \)[/tex] will be defined as long as [tex]\( x \geq -7 \)[/tex].
Thus, the domain of the function [tex]\( y = \sqrt{x + 7} + 5 \)[/tex] is:
[tex]\[ x \geq -7 \][/tex]
Therefore, the correct answer is:
[tex]\[ x \geq -7 \][/tex]
The function involves a square root, [tex]\(\sqrt{x + 7}\)[/tex]. For the square root function to be defined, its radicand (the expression inside the square root) must be non-negative. Therefore, we need:
[tex]\[ x + 7 \geq 0 \][/tex]
Solving this inequality for [tex]\( x \)[/tex], we subtract 7 from both sides:
[tex]\[ x \geq -7 \][/tex]
This means that [tex]\( x \)[/tex] must be greater than or equal to [tex]\(-7\)[/tex] for the expression [tex]\(\sqrt{x + 7}\)[/tex] to be defined. Once we have this condition, the entire function [tex]\( y = \sqrt{x + 7} + 5 \)[/tex] will be defined as long as [tex]\( x \geq -7 \)[/tex].
Thus, the domain of the function [tex]\( y = \sqrt{x + 7} + 5 \)[/tex] is:
[tex]\[ x \geq -7 \][/tex]
Therefore, the correct answer is:
[tex]\[ x \geq -7 \][/tex]
We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Find reliable answers at Westonci.ca. Visit us again for the latest updates and expert advice.