Westonci.ca is the ultimate Q&A platform, offering detailed and reliable answers from a knowledgeable community. Explore a wealth of knowledge from professionals across various disciplines on our comprehensive Q&A platform. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.
Sagot :
To solve the system of equations:
[tex]\[ \begin{array}{c} 2x + 4y = 4 \\ -4x + 3y = -96 \end{array} \][/tex]
we can use the method of linear algebra where we transform the equations into matrix form. Here's the complete step-by-step solution:
1. Write the system of equations in matrix form [tex]\( Ax = B \)[/tex]:
[tex]\[ A = \begin{pmatrix} 2 & 4 \\ -4 & 3 \end{pmatrix}, \quad x = \begin{pmatrix} x \\ y \end{pmatrix}, \quad B = \begin{pmatrix} 4 \\ -96 \end{pmatrix} \][/tex]
2. Calculate the determinant of matrix [tex]\( A \)[/tex]:
The determinant [tex]\( \text{det}(A) \)[/tex] is calculated as:
[tex]\[ \text{det}(A) = 2 \cdot 3 - (-4) \cdot 4 = 6 + 16 = 22 \][/tex]
Since the determinant is non-zero (22 ≠ 0), the system of equations has a unique solution.
3. Find the solution [tex]\( x \)[/tex] using the inverse of matrix [tex]\( A \)[/tex] or a direct solver (like using Cramer's rule or matrix inversion methods):
Given that the determinant is non-zero, we use linear algebra techniques to find the unique solution for [tex]\( x \)[/tex] and [tex]\( y \)[/tex]:
Solving the equations simultaneously, we get:
[tex]\[ x = 18 \][/tex]
[tex]\[ y = -8 \][/tex]
4. Conclusion:
The system of equations has exactly one solution, which is [tex]\( x = 18 \)[/tex] and [tex]\( y = -8 \)[/tex].
Therefore, the system has one solution. The solution set is:
[tex]\[ \{ (18, -8) \} \][/tex].
[tex]\[ \begin{array}{c} 2x + 4y = 4 \\ -4x + 3y = -96 \end{array} \][/tex]
we can use the method of linear algebra where we transform the equations into matrix form. Here's the complete step-by-step solution:
1. Write the system of equations in matrix form [tex]\( Ax = B \)[/tex]:
[tex]\[ A = \begin{pmatrix} 2 & 4 \\ -4 & 3 \end{pmatrix}, \quad x = \begin{pmatrix} x \\ y \end{pmatrix}, \quad B = \begin{pmatrix} 4 \\ -96 \end{pmatrix} \][/tex]
2. Calculate the determinant of matrix [tex]\( A \)[/tex]:
The determinant [tex]\( \text{det}(A) \)[/tex] is calculated as:
[tex]\[ \text{det}(A) = 2 \cdot 3 - (-4) \cdot 4 = 6 + 16 = 22 \][/tex]
Since the determinant is non-zero (22 ≠ 0), the system of equations has a unique solution.
3. Find the solution [tex]\( x \)[/tex] using the inverse of matrix [tex]\( A \)[/tex] or a direct solver (like using Cramer's rule or matrix inversion methods):
Given that the determinant is non-zero, we use linear algebra techniques to find the unique solution for [tex]\( x \)[/tex] and [tex]\( y \)[/tex]:
Solving the equations simultaneously, we get:
[tex]\[ x = 18 \][/tex]
[tex]\[ y = -8 \][/tex]
4. Conclusion:
The system of equations has exactly one solution, which is [tex]\( x = 18 \)[/tex] and [tex]\( y = -8 \)[/tex].
Therefore, the system has one solution. The solution set is:
[tex]\[ \{ (18, -8) \} \][/tex].
Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Westonci.ca is committed to providing accurate answers. Come back soon for more trustworthy information.