Find the best answers to your questions at Westonci.ca, where experts and enthusiasts provide accurate, reliable information. Connect with a community of experts ready to provide precise solutions to your questions on our user-friendly Q&A platform. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform.
Sagot :
To simplify the expression [tex]\(\frac{y}{\sqrt{8} - \sqrt{18} + \sqrt{12} + \sqrt{50} - \sqrt{106}}\)[/tex], let's go through the steps to reduce it into a simpler form.
1. Identify Terms:
The terms in the denominator are:
- [tex]\(\sqrt{8}\)[/tex]
- [tex]\(-\sqrt{18}\)[/tex]
- [tex]\(\sqrt{12}\)[/tex]
- [tex]\(\sqrt{50}\)[/tex]
- [tex]\(-\sqrt{106}\)[/tex]
2. Attempt to Simplify Each Square Root Term:
- [tex]\(\sqrt{8} = \sqrt{4 \cdot 2} = 2\sqrt{2}\)[/tex]
- [tex]\(\sqrt{18} = \sqrt{9 \cdot 2} = 3\sqrt{2}\)[/tex]
- [tex]\(\sqrt{12} = \sqrt{4 \cdot 3} = 2\sqrt{3}\)[/tex]
- [tex]\(\sqrt{50} = \sqrt{25 \cdot 2} = 5\sqrt{2}\)[/tex]
- [tex]\(\sqrt{106}\)[/tex] remains as it is since it's already in simplest form.
3. Substitute Simplified Terms Back Into the Expression:
Substituting the simplified terms, the expression becomes:
[tex]\[ \frac{y}{2\sqrt{2} - 3\sqrt{2} + 2\sqrt{3} + 5\sqrt{2} - \sqrt{106}} \][/tex]
4. Combine Like Terms:
Combine the terms involving [tex]\(\sqrt{2}\)[/tex]:
[tex]\[ 2\sqrt{2} - 3\sqrt{2} + 5\sqrt{2} = (2 - 3 + 5)\sqrt{2} = 4\sqrt{2} \][/tex]
Now, the expression in the denominator is:
[tex]\[ 4\sqrt{2} + 2\sqrt{3} - \sqrt{106} \][/tex]
5. Rewrite the Expression as One Term:
Hence, the simplified form of the original expression is:
[tex]\[ \frac{y}{4\sqrt{2} + 2\sqrt{3} - \sqrt{106}} \][/tex]
So, the simplified form of [tex]\(\frac{y}{\sqrt{8} - \sqrt{18} + \sqrt{12} + \sqrt{50} - \sqrt{106}}\)[/tex] is:
[tex]\[ \boxed{\frac{y}{- \sqrt{106} + 2\sqrt{3} + 4\sqrt{2}}} \][/tex]
1. Identify Terms:
The terms in the denominator are:
- [tex]\(\sqrt{8}\)[/tex]
- [tex]\(-\sqrt{18}\)[/tex]
- [tex]\(\sqrt{12}\)[/tex]
- [tex]\(\sqrt{50}\)[/tex]
- [tex]\(-\sqrt{106}\)[/tex]
2. Attempt to Simplify Each Square Root Term:
- [tex]\(\sqrt{8} = \sqrt{4 \cdot 2} = 2\sqrt{2}\)[/tex]
- [tex]\(\sqrt{18} = \sqrt{9 \cdot 2} = 3\sqrt{2}\)[/tex]
- [tex]\(\sqrt{12} = \sqrt{4 \cdot 3} = 2\sqrt{3}\)[/tex]
- [tex]\(\sqrt{50} = \sqrt{25 \cdot 2} = 5\sqrt{2}\)[/tex]
- [tex]\(\sqrt{106}\)[/tex] remains as it is since it's already in simplest form.
3. Substitute Simplified Terms Back Into the Expression:
Substituting the simplified terms, the expression becomes:
[tex]\[ \frac{y}{2\sqrt{2} - 3\sqrt{2} + 2\sqrt{3} + 5\sqrt{2} - \sqrt{106}} \][/tex]
4. Combine Like Terms:
Combine the terms involving [tex]\(\sqrt{2}\)[/tex]:
[tex]\[ 2\sqrt{2} - 3\sqrt{2} + 5\sqrt{2} = (2 - 3 + 5)\sqrt{2} = 4\sqrt{2} \][/tex]
Now, the expression in the denominator is:
[tex]\[ 4\sqrt{2} + 2\sqrt{3} - \sqrt{106} \][/tex]
5. Rewrite the Expression as One Term:
Hence, the simplified form of the original expression is:
[tex]\[ \frac{y}{4\sqrt{2} + 2\sqrt{3} - \sqrt{106}} \][/tex]
So, the simplified form of [tex]\(\frac{y}{\sqrt{8} - \sqrt{18} + \sqrt{12} + \sqrt{50} - \sqrt{106}}\)[/tex] is:
[tex]\[ \boxed{\frac{y}{- \sqrt{106} + 2\sqrt{3} + 4\sqrt{2}}} \][/tex]
We appreciate your visit. Hopefully, the answers you found were beneficial. Don't hesitate to come back for more information. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. We're glad you visited Westonci.ca. Return anytime for updated answers from our knowledgeable team.