Looking for answers? Westonci.ca is your go-to Q&A platform, offering quick, trustworthy responses from a community of experts. Get immediate and reliable solutions to your questions from a community of experienced experts on our Q&A platform. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.
Sagot :
To solve the system of equations using the addition method, we'll go through the following steps:
1. Write the System of Equations:
We start with the given system of equations:
[tex]\[ \begin{aligned} -5x & = 6y + 1 \qquad \text{(Equation 1)} \\ 5y & = -2 - 3x \qquad \text{(Equation 2)} \end{aligned} \][/tex]
2. Standardize the Form of Equations:
Rearrange both equations to have all variables and constants on one side of the equations:
[tex]\[ \begin{aligned} -5x - 6y & = 1 \qquad \text{(Equation 1)} \\ 3x + 5y & = -2 \qquad \text{(Equation 2)} \end{aligned} \][/tex]
3. Eliminate a Variable:
Multiply Equation 1 by 3 and Equation 2 by 5 to align the coefficients of [tex]\(x\)[/tex]:
[tex]\[ \begin{aligned} 3(-5x - 6y) & = 3(1) \\ -15x - 18y & = 3 \qquad \text{(Equation 3)} \end{aligned} \][/tex]
[tex]\[ \begin{aligned} 5(3x + 5y) & = 5(-2) \\ 15x + 25y & = -10 \qquad \text{(Equation 4)} \end{aligned} \][/tex]
4. Add the New Equations to Eliminate [tex]\(x\)[/tex]:
Now add Equation 3 and Equation 4 to eliminate [tex]\(x\)[/tex]:
[tex]\[ \begin{aligned} (-15x - 18y) + (15x + 25y) & = 3 + (-10) \\ (-15x + 15x) + (-18y + 25y) & = -7 \\ 0 + 7y & = -7 \\ 7y & = -7 \\ y & = -1 \end{aligned} \][/tex]
5. Substitute [tex]\(y = -1\)[/tex] Back into One of the Original Equations:
Substitute [tex]\(y = -1\)[/tex] back into Equation 1:
[tex]\[ -5x - 6(-1) = 1 \\ -5x + 6 = 1 \\ -5x = 1 - 6 \\ -5x = -5 \\ x = 1 \][/tex]
6. Write the Solution:
The solution to the system is [tex]\(x = 1\)[/tex] and [tex]\(y = -1\)[/tex].
Thus, the solution set is [tex]\((1, -1)\)[/tex]. This means the system has a single unique solution where [tex]\(x = 1\)[/tex] and [tex]\(y = -1\)[/tex].
1. Write the System of Equations:
We start with the given system of equations:
[tex]\[ \begin{aligned} -5x & = 6y + 1 \qquad \text{(Equation 1)} \\ 5y & = -2 - 3x \qquad \text{(Equation 2)} \end{aligned} \][/tex]
2. Standardize the Form of Equations:
Rearrange both equations to have all variables and constants on one side of the equations:
[tex]\[ \begin{aligned} -5x - 6y & = 1 \qquad \text{(Equation 1)} \\ 3x + 5y & = -2 \qquad \text{(Equation 2)} \end{aligned} \][/tex]
3. Eliminate a Variable:
Multiply Equation 1 by 3 and Equation 2 by 5 to align the coefficients of [tex]\(x\)[/tex]:
[tex]\[ \begin{aligned} 3(-5x - 6y) & = 3(1) \\ -15x - 18y & = 3 \qquad \text{(Equation 3)} \end{aligned} \][/tex]
[tex]\[ \begin{aligned} 5(3x + 5y) & = 5(-2) \\ 15x + 25y & = -10 \qquad \text{(Equation 4)} \end{aligned} \][/tex]
4. Add the New Equations to Eliminate [tex]\(x\)[/tex]:
Now add Equation 3 and Equation 4 to eliminate [tex]\(x\)[/tex]:
[tex]\[ \begin{aligned} (-15x - 18y) + (15x + 25y) & = 3 + (-10) \\ (-15x + 15x) + (-18y + 25y) & = -7 \\ 0 + 7y & = -7 \\ 7y & = -7 \\ y & = -1 \end{aligned} \][/tex]
5. Substitute [tex]\(y = -1\)[/tex] Back into One of the Original Equations:
Substitute [tex]\(y = -1\)[/tex] back into Equation 1:
[tex]\[ -5x - 6(-1) = 1 \\ -5x + 6 = 1 \\ -5x = 1 - 6 \\ -5x = -5 \\ x = 1 \][/tex]
6. Write the Solution:
The solution to the system is [tex]\(x = 1\)[/tex] and [tex]\(y = -1\)[/tex].
Thus, the solution set is [tex]\((1, -1)\)[/tex]. This means the system has a single unique solution where [tex]\(x = 1\)[/tex] and [tex]\(y = -1\)[/tex].
We appreciate your time. Please come back anytime for the latest information and answers to your questions. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Find reliable answers at Westonci.ca. Visit us again for the latest updates and expert advice.