Welcome to Westonci.ca, where your questions are met with accurate answers from a community of experts and enthusiasts. Join our platform to connect with experts ready to provide precise answers to your questions in various areas. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform.
Sagot :
To find the position function [tex]\( s(t) \)[/tex] given the velocity function [tex]\( v(t) = e^{-3t} + 3 \)[/tex] and the initial position [tex]\( s(0) = 2 \)[/tex], we need to follow these steps:
1. Understand the Relationship Between Velocity and Position:
The velocity function [tex]\( v(t) \)[/tex] is the derivative of the position function [tex]\( s(t) \)[/tex]. Thus, we have:
[tex]\[ v(t) = \frac{ds}{dt} \][/tex]
We need to integrate the velocity function to obtain the position function.
2. Integrate the Velocity Function:
To find [tex]\( s(t) \)[/tex], we integrate [tex]\( v(t) \)[/tex] with respect to [tex]\( t \)[/tex]:
[tex]\[ s(t) = \int v(t) \, dt \][/tex]
Substituting the given velocity function [tex]\( v(t) \)[/tex]:
[tex]\[ s(t) = \int (e^{-3t} + 3) \, dt \][/tex]
3. Performing the Integration:
We integrate the function [tex]\( e^{-3t} + 3 \)[/tex] term by term:
[tex]\[ s(t) = \int e^{-3t} \, dt + \int 3 \, dt \][/tex]
- First Term: Integrating [tex]\( e^{-3t} \)[/tex]:
[tex]\[ \int e^{-3t} \, dt = -\frac{1}{3} e^{-3t} + C_1 \][/tex]
where [tex]\( C_1 \)[/tex] is a constant of integration.
- Second Term: Integrating [tex]\( 3 \)[/tex]:
[tex]\[ \int 3 \, dt = 3t + C_2 \][/tex]
where [tex]\( C_2 \)[/tex] is a constant of integration.
Combining both terms, we get:
[tex]\[ s(t) = -\frac{1}{3} e^{-3t} + 3t + C \][/tex]
where [tex]\( C = C_1 + C_2 \)[/tex] is the combined constant of integration.
4. Determine the Constant of Integration with Initial Condition:
We use the initial condition [tex]\( s(0) = 2 \)[/tex] to find the constant [tex]\( C \)[/tex]:
[tex]\[ s(0) = -\frac{1}{3} e^{0} + 3(0) + C = 2 \][/tex]
Simplifying:
[tex]\[ -\frac{1}{3} + C = 2 \][/tex]
Solving for [tex]\( C \)[/tex]:
[tex]\[ C = 2 + \frac{1}{3} = \frac{6}{3} + \frac{1}{3} = \frac{7}{3} \][/tex]
5. Write the Final Position Function:
Substituting [tex]\( C = \frac{7}{3} \)[/tex] back into the position function, we have:
[tex]\[ s(t) = -\frac{1}{3} e^{-3t} + 3t + \frac{7}{3} \][/tex]
Simplifying, we can write the final position function as:
[tex]\[ s(t) = 3t + \frac{7}{3} - \frac{e^{-3t}}{3} \][/tex]
So, the position function [tex]\( s(t) \)[/tex] is:
[tex]\[ s(t) = 3t + 2 - \frac{e^{-3t}}{3} \][/tex]
1. Understand the Relationship Between Velocity and Position:
The velocity function [tex]\( v(t) \)[/tex] is the derivative of the position function [tex]\( s(t) \)[/tex]. Thus, we have:
[tex]\[ v(t) = \frac{ds}{dt} \][/tex]
We need to integrate the velocity function to obtain the position function.
2. Integrate the Velocity Function:
To find [tex]\( s(t) \)[/tex], we integrate [tex]\( v(t) \)[/tex] with respect to [tex]\( t \)[/tex]:
[tex]\[ s(t) = \int v(t) \, dt \][/tex]
Substituting the given velocity function [tex]\( v(t) \)[/tex]:
[tex]\[ s(t) = \int (e^{-3t} + 3) \, dt \][/tex]
3. Performing the Integration:
We integrate the function [tex]\( e^{-3t} + 3 \)[/tex] term by term:
[tex]\[ s(t) = \int e^{-3t} \, dt + \int 3 \, dt \][/tex]
- First Term: Integrating [tex]\( e^{-3t} \)[/tex]:
[tex]\[ \int e^{-3t} \, dt = -\frac{1}{3} e^{-3t} + C_1 \][/tex]
where [tex]\( C_1 \)[/tex] is a constant of integration.
- Second Term: Integrating [tex]\( 3 \)[/tex]:
[tex]\[ \int 3 \, dt = 3t + C_2 \][/tex]
where [tex]\( C_2 \)[/tex] is a constant of integration.
Combining both terms, we get:
[tex]\[ s(t) = -\frac{1}{3} e^{-3t} + 3t + C \][/tex]
where [tex]\( C = C_1 + C_2 \)[/tex] is the combined constant of integration.
4. Determine the Constant of Integration with Initial Condition:
We use the initial condition [tex]\( s(0) = 2 \)[/tex] to find the constant [tex]\( C \)[/tex]:
[tex]\[ s(0) = -\frac{1}{3} e^{0} + 3(0) + C = 2 \][/tex]
Simplifying:
[tex]\[ -\frac{1}{3} + C = 2 \][/tex]
Solving for [tex]\( C \)[/tex]:
[tex]\[ C = 2 + \frac{1}{3} = \frac{6}{3} + \frac{1}{3} = \frac{7}{3} \][/tex]
5. Write the Final Position Function:
Substituting [tex]\( C = \frac{7}{3} \)[/tex] back into the position function, we have:
[tex]\[ s(t) = -\frac{1}{3} e^{-3t} + 3t + \frac{7}{3} \][/tex]
Simplifying, we can write the final position function as:
[tex]\[ s(t) = 3t + \frac{7}{3} - \frac{e^{-3t}}{3} \][/tex]
So, the position function [tex]\( s(t) \)[/tex] is:
[tex]\[ s(t) = 3t + 2 - \frac{e^{-3t}}{3} \][/tex]
Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. We're glad you chose Westonci.ca. Revisit us for updated answers from our knowledgeable team.