Explore Westonci.ca, the top Q&A platform where your questions are answered by professionals and enthusiasts alike. Discover precise answers to your questions from a wide range of experts on our user-friendly Q&A platform. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.
Sagot :
Let's examine the given function:
[tex]\[ y = \frac{7}{3} \cot \left[\frac{1}{3} \left(x - \frac{\pi}{4}\right)\right] \][/tex]
### (a) Period
The general form of the cotangent function is [tex]\(y = A \cot(Bx - C)\)[/tex], where [tex]\(A\)[/tex] is the amplitude, [tex]\(B\)[/tex] is the coefficient of [tex]\(x\)[/tex] that affects the period, and [tex]\(C\)[/tex] is the phase shift. The period of the cotangent function is given by:
[tex]\[ \text{Period} = \frac{\pi}{B} \][/tex]
For the given function:
[tex]\[ B = \frac{1}{3} \][/tex]
Substituting [tex]\(B\)[/tex] into the period formula:
[tex]\[ \text{Period} = \frac{\pi}{\frac{1}{3}} = 3\pi \][/tex]
### (b) Phase Shift
The phase shift of a function in the form [tex]\(y = A \cot(Bx - C)\)[/tex] is given by:
[tex]\[ \text{Phase Shift} = \frac{C}{B} \][/tex]
In the given function, [tex]\(C = \frac{\pi}{4}\)[/tex] and [tex]\(B = \frac{1}{3}\)[/tex]. Substituting these values into the formula for phase shift:
[tex]\[ \text{Phase Shift} = \frac{\frac{\pi}{4}}{\frac{1}{3}} = \frac{\pi}{4} \cdot 3 = \frac{3\pi}{4} \][/tex]
### (c) Range
The range of the cotangent function, [tex]\(\cot(x)\)[/tex], is all real numbers, since the cotangent can take any real value as [tex]\(x\)[/tex] varies over its domain (except at its asymptotes).
To summarize:
- (a) Period: [tex]\(\boxed{3 \pi}\)[/tex]
- (b) Phase Shift: [tex]\(\boxed{\frac{3 \pi}{4}}\)[/tex]
- (c) Range: [tex]\(\boxed{\text{all real numbers}}\)[/tex]
These results match the detailed analysis.
[tex]\[ y = \frac{7}{3} \cot \left[\frac{1}{3} \left(x - \frac{\pi}{4}\right)\right] \][/tex]
### (a) Period
The general form of the cotangent function is [tex]\(y = A \cot(Bx - C)\)[/tex], where [tex]\(A\)[/tex] is the amplitude, [tex]\(B\)[/tex] is the coefficient of [tex]\(x\)[/tex] that affects the period, and [tex]\(C\)[/tex] is the phase shift. The period of the cotangent function is given by:
[tex]\[ \text{Period} = \frac{\pi}{B} \][/tex]
For the given function:
[tex]\[ B = \frac{1}{3} \][/tex]
Substituting [tex]\(B\)[/tex] into the period formula:
[tex]\[ \text{Period} = \frac{\pi}{\frac{1}{3}} = 3\pi \][/tex]
### (b) Phase Shift
The phase shift of a function in the form [tex]\(y = A \cot(Bx - C)\)[/tex] is given by:
[tex]\[ \text{Phase Shift} = \frac{C}{B} \][/tex]
In the given function, [tex]\(C = \frac{\pi}{4}\)[/tex] and [tex]\(B = \frac{1}{3}\)[/tex]. Substituting these values into the formula for phase shift:
[tex]\[ \text{Phase Shift} = \frac{\frac{\pi}{4}}{\frac{1}{3}} = \frac{\pi}{4} \cdot 3 = \frac{3\pi}{4} \][/tex]
### (c) Range
The range of the cotangent function, [tex]\(\cot(x)\)[/tex], is all real numbers, since the cotangent can take any real value as [tex]\(x\)[/tex] varies over its domain (except at its asymptotes).
To summarize:
- (a) Period: [tex]\(\boxed{3 \pi}\)[/tex]
- (b) Phase Shift: [tex]\(\boxed{\frac{3 \pi}{4}}\)[/tex]
- (c) Range: [tex]\(\boxed{\text{all real numbers}}\)[/tex]
These results match the detailed analysis.
We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. We're here to help at Westonci.ca. Keep visiting for the best answers to your questions.