Westonci.ca offers fast, accurate answers to your questions. Join our community and get the insights you need now. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.
Sagot :
Let's examine the given function:
[tex]\[ y = \frac{7}{3} \cot \left[\frac{1}{3} \left(x - \frac{\pi}{4}\right)\right] \][/tex]
### (a) Period
The general form of the cotangent function is [tex]\(y = A \cot(Bx - C)\)[/tex], where [tex]\(A\)[/tex] is the amplitude, [tex]\(B\)[/tex] is the coefficient of [tex]\(x\)[/tex] that affects the period, and [tex]\(C\)[/tex] is the phase shift. The period of the cotangent function is given by:
[tex]\[ \text{Period} = \frac{\pi}{B} \][/tex]
For the given function:
[tex]\[ B = \frac{1}{3} \][/tex]
Substituting [tex]\(B\)[/tex] into the period formula:
[tex]\[ \text{Period} = \frac{\pi}{\frac{1}{3}} = 3\pi \][/tex]
### (b) Phase Shift
The phase shift of a function in the form [tex]\(y = A \cot(Bx - C)\)[/tex] is given by:
[tex]\[ \text{Phase Shift} = \frac{C}{B} \][/tex]
In the given function, [tex]\(C = \frac{\pi}{4}\)[/tex] and [tex]\(B = \frac{1}{3}\)[/tex]. Substituting these values into the formula for phase shift:
[tex]\[ \text{Phase Shift} = \frac{\frac{\pi}{4}}{\frac{1}{3}} = \frac{\pi}{4} \cdot 3 = \frac{3\pi}{4} \][/tex]
### (c) Range
The range of the cotangent function, [tex]\(\cot(x)\)[/tex], is all real numbers, since the cotangent can take any real value as [tex]\(x\)[/tex] varies over its domain (except at its asymptotes).
To summarize:
- (a) Period: [tex]\(\boxed{3 \pi}\)[/tex]
- (b) Phase Shift: [tex]\(\boxed{\frac{3 \pi}{4}}\)[/tex]
- (c) Range: [tex]\(\boxed{\text{all real numbers}}\)[/tex]
These results match the detailed analysis.
[tex]\[ y = \frac{7}{3} \cot \left[\frac{1}{3} \left(x - \frac{\pi}{4}\right)\right] \][/tex]
### (a) Period
The general form of the cotangent function is [tex]\(y = A \cot(Bx - C)\)[/tex], where [tex]\(A\)[/tex] is the amplitude, [tex]\(B\)[/tex] is the coefficient of [tex]\(x\)[/tex] that affects the period, and [tex]\(C\)[/tex] is the phase shift. The period of the cotangent function is given by:
[tex]\[ \text{Period} = \frac{\pi}{B} \][/tex]
For the given function:
[tex]\[ B = \frac{1}{3} \][/tex]
Substituting [tex]\(B\)[/tex] into the period formula:
[tex]\[ \text{Period} = \frac{\pi}{\frac{1}{3}} = 3\pi \][/tex]
### (b) Phase Shift
The phase shift of a function in the form [tex]\(y = A \cot(Bx - C)\)[/tex] is given by:
[tex]\[ \text{Phase Shift} = \frac{C}{B} \][/tex]
In the given function, [tex]\(C = \frac{\pi}{4}\)[/tex] and [tex]\(B = \frac{1}{3}\)[/tex]. Substituting these values into the formula for phase shift:
[tex]\[ \text{Phase Shift} = \frac{\frac{\pi}{4}}{\frac{1}{3}} = \frac{\pi}{4} \cdot 3 = \frac{3\pi}{4} \][/tex]
### (c) Range
The range of the cotangent function, [tex]\(\cot(x)\)[/tex], is all real numbers, since the cotangent can take any real value as [tex]\(x\)[/tex] varies over its domain (except at its asymptotes).
To summarize:
- (a) Period: [tex]\(\boxed{3 \pi}\)[/tex]
- (b) Phase Shift: [tex]\(\boxed{\frac{3 \pi}{4}}\)[/tex]
- (c) Range: [tex]\(\boxed{\text{all real numbers}}\)[/tex]
These results match the detailed analysis.
We hope this was helpful. Please come back whenever you need more information or answers to your queries. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Westonci.ca is your go-to source for reliable answers. Return soon for more expert insights.