Looking for trustworthy answers? Westonci.ca is the ultimate Q&A platform where experts share their knowledge on various topics. Our Q&A platform offers a seamless experience for finding reliable answers from experts in various disciplines. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform.
Sagot :
To solve this problem, we'll approach it step-by-step.
### Step 1: Calculate the Magnetic Flux through the Coil
The magnetic flux [tex]\(\Phi_B\)[/tex] through a coil is given by the formula:
[tex]\[ \Phi_B = N \cdot B \cdot A \][/tex]
where:
- [tex]\(N\)[/tex] is the number of turns in the coil,
- [tex]\(B\)[/tex] is the magnetic field strength,
- [tex]\(A\)[/tex] is the area of the coil.
Given:
- [tex]\(N = 220\)[/tex] turns,
- [tex]\(B_0 = 0.0605 \, T\)[/tex],
- Radius of the coil, [tex]\(r = 10.5 \, \text{cm} = 0.105 \, m\)[/tex].
First, we need to calculate the area [tex]\(A\)[/tex] of the circular coil:
[tex]\[ A = \pi r^2 \][/tex]
Substitute the radius:
[tex]\[ A = \pi \times (0.105 \, m)^2 \][/tex]
Next, we compute the magnetic flux [tex]\(\Phi_B\)[/tex]:
[tex]\[ \Phi_B = 220 \times 0.0605 \times \pi \times (0.105)^2 \][/tex]
The result of this calculation is:
[tex]\[ \Phi_B = 0.46100594536756356 \, T \cdot m^2 \][/tex]
### Step 2: Calculate the Induced EMF
The induced emf [tex]\(|E|\)[/tex] during a change in magnetic field is given by Faraday's Law of Induction:
[tex]\[ |E| = N \cdot \frac{\Delta B \cdot A}{\Delta t} \][/tex]
where:
- [tex]\(\Delta B\)[/tex] is the change in magnetic field,
- [tex]\(\Delta t\)[/tex] is the time interval over which the change occurs.
Given:
- Final magnetic field, [tex]\(B_0 = 0.200 \, T\)[/tex],
- Initial magnetic field, [tex]\(B_0 = 0.0605 \, T\)[/tex],
- Time interval, [tex]\(\Delta t = 0.480 \, \text{s}\)[/tex].
Calculate the change in magnetic field:
[tex]\[ \Delta B = B_0 \, \text{final} - B_0 \, \text{initial} = 0.200 - 0.0605 = 0.1395 \, T \][/tex]
Substitute all values into the emf formula:
[tex]\[ |E| = 220 \times \frac{0.1395 \times \pi \times (0.105)^2}{0.480} \][/tex]
The result of this calculation is:
[tex]\[ |E| = 2.214543022685094 \, V \][/tex]
### Summary
The magnitude of the magnetic flux [tex]\(\Phi_B\)[/tex] through the coil is:
[tex]\[ \Phi_B = 0.46100594536756356 \, T \cdot m^2 \][/tex]
The magnitude of the induced emf [tex]\(|E|\)[/tex] during the time interval is:
[tex]\[ |E| = 2.214543022685094 \, V \][/tex]
### Step 1: Calculate the Magnetic Flux through the Coil
The magnetic flux [tex]\(\Phi_B\)[/tex] through a coil is given by the formula:
[tex]\[ \Phi_B = N \cdot B \cdot A \][/tex]
where:
- [tex]\(N\)[/tex] is the number of turns in the coil,
- [tex]\(B\)[/tex] is the magnetic field strength,
- [tex]\(A\)[/tex] is the area of the coil.
Given:
- [tex]\(N = 220\)[/tex] turns,
- [tex]\(B_0 = 0.0605 \, T\)[/tex],
- Radius of the coil, [tex]\(r = 10.5 \, \text{cm} = 0.105 \, m\)[/tex].
First, we need to calculate the area [tex]\(A\)[/tex] of the circular coil:
[tex]\[ A = \pi r^2 \][/tex]
Substitute the radius:
[tex]\[ A = \pi \times (0.105 \, m)^2 \][/tex]
Next, we compute the magnetic flux [tex]\(\Phi_B\)[/tex]:
[tex]\[ \Phi_B = 220 \times 0.0605 \times \pi \times (0.105)^2 \][/tex]
The result of this calculation is:
[tex]\[ \Phi_B = 0.46100594536756356 \, T \cdot m^2 \][/tex]
### Step 2: Calculate the Induced EMF
The induced emf [tex]\(|E|\)[/tex] during a change in magnetic field is given by Faraday's Law of Induction:
[tex]\[ |E| = N \cdot \frac{\Delta B \cdot A}{\Delta t} \][/tex]
where:
- [tex]\(\Delta B\)[/tex] is the change in magnetic field,
- [tex]\(\Delta t\)[/tex] is the time interval over which the change occurs.
Given:
- Final magnetic field, [tex]\(B_0 = 0.200 \, T\)[/tex],
- Initial magnetic field, [tex]\(B_0 = 0.0605 \, T\)[/tex],
- Time interval, [tex]\(\Delta t = 0.480 \, \text{s}\)[/tex].
Calculate the change in magnetic field:
[tex]\[ \Delta B = B_0 \, \text{final} - B_0 \, \text{initial} = 0.200 - 0.0605 = 0.1395 \, T \][/tex]
Substitute all values into the emf formula:
[tex]\[ |E| = 220 \times \frac{0.1395 \times \pi \times (0.105)^2}{0.480} \][/tex]
The result of this calculation is:
[tex]\[ |E| = 2.214543022685094 \, V \][/tex]
### Summary
The magnitude of the magnetic flux [tex]\(\Phi_B\)[/tex] through the coil is:
[tex]\[ \Phi_B = 0.46100594536756356 \, T \cdot m^2 \][/tex]
The magnitude of the induced emf [tex]\(|E|\)[/tex] during the time interval is:
[tex]\[ |E| = 2.214543022685094 \, V \][/tex]
We appreciate your time. Please come back anytime for the latest information and answers to your questions. Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Keep exploring Westonci.ca for more insightful answers to your questions. We're here to help.