Discover a world of knowledge at Westonci.ca, where experts and enthusiasts come together to answer your questions. Our platform offers a seamless experience for finding reliable answers from a network of experienced professionals. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform.
Sagot :
To find the values of [tex]\(a\)[/tex] and [tex]\(b\)[/tex] that will make the equation [tex]\(CD = I\)[/tex] true, we will need to solve the equation step by step.
Given matrices [tex]\(C\)[/tex] and [tex]\(D\)[/tex]:
[tex]\[ C = \begin{bmatrix} 2 & 1 & 0 \\ 0 & 3 & 4 \\ 0 & 2 & 1 \end{bmatrix} \][/tex]
[tex]\[ D = \begin{bmatrix} a & b & -0.4 \\ 0 & -0.2 & 0.8 \\ 0 & 0.4 & -0.6 \end{bmatrix} \][/tex]
The identity matrix [tex]\(I\)[/tex] is:
[tex]\[ I = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \][/tex]
We need to find [tex]\(a\)[/tex] and [tex]\(b\)[/tex] such that [tex]\(CD = I\)[/tex].
1. Start by calculating the product [tex]\(CD\)[/tex]:
[tex]\[ CD = \begin{bmatrix} 2 & 1 & 0 \\ 0 & 3 & 4 \\ 0 & 2 & 1 \end{bmatrix} \begin{bmatrix} a & b & -0.4 \\ 0 & -0.2 & 0.8 \\ 0 & 0.4 & -0.6 \end{bmatrix} \][/tex]
Now, performing the matrix multiplication:
[tex]\[ CD_{11} = 2a + 1 \cdot 0 + 0 \cdot 0 = 2a \][/tex]
[tex]\[ CD_{12} = 2b + 1 \cdot (-0.2) + 0 \cdot 0.4 = 2b - 0.2 \][/tex]
[tex]\[ CD_{13} = 2 \cdot (-0.4) + 1 \cdot 0.8 + 0 \cdot (-0.6) = -0.8 + 0.8 = 0 \][/tex]
[tex]\[ CD_{21} = 0 \cdot a + 3 \cdot 0 + 4 \cdot 0 = 0 \][/tex]
[tex]\[ CD_{22} = 0 \cdot b + 3 \cdot (-0.2) + 4 \cdot 0.4 = -0.6 + 1.6 = 1 \][/tex]
[tex]\[ CD_{23} = 0 \cdot (-0.4) + 3 \cdot 0.8 + 4 \cdot (-0.6) = 2.4 - 2.4 = 0 \][/tex]
[tex]\[ CD_{31} = 0 \cdot a + 2 \cdot 0 + 1 \cdot 0 = 0 \][/tex]
[tex]\[ CD_{32} = 0 \cdot b + 2 \cdot (-0.2) + 1 \cdot 0.4 = -0.4 + 0.4 = 0 \][/tex]
[tex]\[ CD_{33} = 0 \cdot (-0.4) + 2 \cdot 0.8 + 1 \cdot (-0.6) = 1.6 - 0.6 = 1 \][/tex]
So we have:
[tex]\[ CD = \begin{bmatrix} 2a & 2b - 0.2 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \][/tex]
For [tex]\(CD\)[/tex] to equal the identity matrix [tex]\(I\)[/tex], the elements in [tex]\(CD\)[/tex] should match the corresponding elements in [tex]\(I\)[/tex]:
1. From the [tex]\( (1, 1) \)[/tex] position:
[tex]\[ 2a = 1 \][/tex]
Thus,
[tex]\[ a = \frac{1}{2} = 0.5 \][/tex]
2. From the [tex]\( (1, 2) \)[/tex] position:
[tex]\[ 2b - 0.2 = 0 \][/tex]
Thus,
[tex]\[ 2b = 0.2 \][/tex]
[tex]\[ b = \frac{0.2}{2} = 0.1 \][/tex]
So the values of [tex]\(a\)[/tex] and [tex]\(b\)[/tex] that will make the equation [tex]\(CD = I\)[/tex] true are:
[tex]\[ a = 0.5 \][/tex]
[tex]\[ b = 0.1 \][/tex]
Given matrices [tex]\(C\)[/tex] and [tex]\(D\)[/tex]:
[tex]\[ C = \begin{bmatrix} 2 & 1 & 0 \\ 0 & 3 & 4 \\ 0 & 2 & 1 \end{bmatrix} \][/tex]
[tex]\[ D = \begin{bmatrix} a & b & -0.4 \\ 0 & -0.2 & 0.8 \\ 0 & 0.4 & -0.6 \end{bmatrix} \][/tex]
The identity matrix [tex]\(I\)[/tex] is:
[tex]\[ I = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \][/tex]
We need to find [tex]\(a\)[/tex] and [tex]\(b\)[/tex] such that [tex]\(CD = I\)[/tex].
1. Start by calculating the product [tex]\(CD\)[/tex]:
[tex]\[ CD = \begin{bmatrix} 2 & 1 & 0 \\ 0 & 3 & 4 \\ 0 & 2 & 1 \end{bmatrix} \begin{bmatrix} a & b & -0.4 \\ 0 & -0.2 & 0.8 \\ 0 & 0.4 & -0.6 \end{bmatrix} \][/tex]
Now, performing the matrix multiplication:
[tex]\[ CD_{11} = 2a + 1 \cdot 0 + 0 \cdot 0 = 2a \][/tex]
[tex]\[ CD_{12} = 2b + 1 \cdot (-0.2) + 0 \cdot 0.4 = 2b - 0.2 \][/tex]
[tex]\[ CD_{13} = 2 \cdot (-0.4) + 1 \cdot 0.8 + 0 \cdot (-0.6) = -0.8 + 0.8 = 0 \][/tex]
[tex]\[ CD_{21} = 0 \cdot a + 3 \cdot 0 + 4 \cdot 0 = 0 \][/tex]
[tex]\[ CD_{22} = 0 \cdot b + 3 \cdot (-0.2) + 4 \cdot 0.4 = -0.6 + 1.6 = 1 \][/tex]
[tex]\[ CD_{23} = 0 \cdot (-0.4) + 3 \cdot 0.8 + 4 \cdot (-0.6) = 2.4 - 2.4 = 0 \][/tex]
[tex]\[ CD_{31} = 0 \cdot a + 2 \cdot 0 + 1 \cdot 0 = 0 \][/tex]
[tex]\[ CD_{32} = 0 \cdot b + 2 \cdot (-0.2) + 1 \cdot 0.4 = -0.4 + 0.4 = 0 \][/tex]
[tex]\[ CD_{33} = 0 \cdot (-0.4) + 2 \cdot 0.8 + 1 \cdot (-0.6) = 1.6 - 0.6 = 1 \][/tex]
So we have:
[tex]\[ CD = \begin{bmatrix} 2a & 2b - 0.2 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \][/tex]
For [tex]\(CD\)[/tex] to equal the identity matrix [tex]\(I\)[/tex], the elements in [tex]\(CD\)[/tex] should match the corresponding elements in [tex]\(I\)[/tex]:
1. From the [tex]\( (1, 1) \)[/tex] position:
[tex]\[ 2a = 1 \][/tex]
Thus,
[tex]\[ a = \frac{1}{2} = 0.5 \][/tex]
2. From the [tex]\( (1, 2) \)[/tex] position:
[tex]\[ 2b - 0.2 = 0 \][/tex]
Thus,
[tex]\[ 2b = 0.2 \][/tex]
[tex]\[ b = \frac{0.2}{2} = 0.1 \][/tex]
So the values of [tex]\(a\)[/tex] and [tex]\(b\)[/tex] that will make the equation [tex]\(CD = I\)[/tex] true are:
[tex]\[ a = 0.5 \][/tex]
[tex]\[ b = 0.1 \][/tex]
We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Thank you for trusting Westonci.ca. Don't forget to revisit us for more accurate and insightful answers.