Explore Westonci.ca, the leading Q&A site where experts provide accurate and helpful answers to all your questions. Our platform offers a seamless experience for finding reliable answers from a network of experienced professionals. Get quick and reliable solutions to your questions from a community of experienced experts on our platform.
Sagot :
To find the values of [tex]\(a\)[/tex] and [tex]\(b\)[/tex] that will make the equation [tex]\(CD = I\)[/tex] true, we will need to solve the equation step by step.
Given matrices [tex]\(C\)[/tex] and [tex]\(D\)[/tex]:
[tex]\[ C = \begin{bmatrix} 2 & 1 & 0 \\ 0 & 3 & 4 \\ 0 & 2 & 1 \end{bmatrix} \][/tex]
[tex]\[ D = \begin{bmatrix} a & b & -0.4 \\ 0 & -0.2 & 0.8 \\ 0 & 0.4 & -0.6 \end{bmatrix} \][/tex]
The identity matrix [tex]\(I\)[/tex] is:
[tex]\[ I = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \][/tex]
We need to find [tex]\(a\)[/tex] and [tex]\(b\)[/tex] such that [tex]\(CD = I\)[/tex].
1. Start by calculating the product [tex]\(CD\)[/tex]:
[tex]\[ CD = \begin{bmatrix} 2 & 1 & 0 \\ 0 & 3 & 4 \\ 0 & 2 & 1 \end{bmatrix} \begin{bmatrix} a & b & -0.4 \\ 0 & -0.2 & 0.8 \\ 0 & 0.4 & -0.6 \end{bmatrix} \][/tex]
Now, performing the matrix multiplication:
[tex]\[ CD_{11} = 2a + 1 \cdot 0 + 0 \cdot 0 = 2a \][/tex]
[tex]\[ CD_{12} = 2b + 1 \cdot (-0.2) + 0 \cdot 0.4 = 2b - 0.2 \][/tex]
[tex]\[ CD_{13} = 2 \cdot (-0.4) + 1 \cdot 0.8 + 0 \cdot (-0.6) = -0.8 + 0.8 = 0 \][/tex]
[tex]\[ CD_{21} = 0 \cdot a + 3 \cdot 0 + 4 \cdot 0 = 0 \][/tex]
[tex]\[ CD_{22} = 0 \cdot b + 3 \cdot (-0.2) + 4 \cdot 0.4 = -0.6 + 1.6 = 1 \][/tex]
[tex]\[ CD_{23} = 0 \cdot (-0.4) + 3 \cdot 0.8 + 4 \cdot (-0.6) = 2.4 - 2.4 = 0 \][/tex]
[tex]\[ CD_{31} = 0 \cdot a + 2 \cdot 0 + 1 \cdot 0 = 0 \][/tex]
[tex]\[ CD_{32} = 0 \cdot b + 2 \cdot (-0.2) + 1 \cdot 0.4 = -0.4 + 0.4 = 0 \][/tex]
[tex]\[ CD_{33} = 0 \cdot (-0.4) + 2 \cdot 0.8 + 1 \cdot (-0.6) = 1.6 - 0.6 = 1 \][/tex]
So we have:
[tex]\[ CD = \begin{bmatrix} 2a & 2b - 0.2 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \][/tex]
For [tex]\(CD\)[/tex] to equal the identity matrix [tex]\(I\)[/tex], the elements in [tex]\(CD\)[/tex] should match the corresponding elements in [tex]\(I\)[/tex]:
1. From the [tex]\( (1, 1) \)[/tex] position:
[tex]\[ 2a = 1 \][/tex]
Thus,
[tex]\[ a = \frac{1}{2} = 0.5 \][/tex]
2. From the [tex]\( (1, 2) \)[/tex] position:
[tex]\[ 2b - 0.2 = 0 \][/tex]
Thus,
[tex]\[ 2b = 0.2 \][/tex]
[tex]\[ b = \frac{0.2}{2} = 0.1 \][/tex]
So the values of [tex]\(a\)[/tex] and [tex]\(b\)[/tex] that will make the equation [tex]\(CD = I\)[/tex] true are:
[tex]\[ a = 0.5 \][/tex]
[tex]\[ b = 0.1 \][/tex]
Given matrices [tex]\(C\)[/tex] and [tex]\(D\)[/tex]:
[tex]\[ C = \begin{bmatrix} 2 & 1 & 0 \\ 0 & 3 & 4 \\ 0 & 2 & 1 \end{bmatrix} \][/tex]
[tex]\[ D = \begin{bmatrix} a & b & -0.4 \\ 0 & -0.2 & 0.8 \\ 0 & 0.4 & -0.6 \end{bmatrix} \][/tex]
The identity matrix [tex]\(I\)[/tex] is:
[tex]\[ I = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \][/tex]
We need to find [tex]\(a\)[/tex] and [tex]\(b\)[/tex] such that [tex]\(CD = I\)[/tex].
1. Start by calculating the product [tex]\(CD\)[/tex]:
[tex]\[ CD = \begin{bmatrix} 2 & 1 & 0 \\ 0 & 3 & 4 \\ 0 & 2 & 1 \end{bmatrix} \begin{bmatrix} a & b & -0.4 \\ 0 & -0.2 & 0.8 \\ 0 & 0.4 & -0.6 \end{bmatrix} \][/tex]
Now, performing the matrix multiplication:
[tex]\[ CD_{11} = 2a + 1 \cdot 0 + 0 \cdot 0 = 2a \][/tex]
[tex]\[ CD_{12} = 2b + 1 \cdot (-0.2) + 0 \cdot 0.4 = 2b - 0.2 \][/tex]
[tex]\[ CD_{13} = 2 \cdot (-0.4) + 1 \cdot 0.8 + 0 \cdot (-0.6) = -0.8 + 0.8 = 0 \][/tex]
[tex]\[ CD_{21} = 0 \cdot a + 3 \cdot 0 + 4 \cdot 0 = 0 \][/tex]
[tex]\[ CD_{22} = 0 \cdot b + 3 \cdot (-0.2) + 4 \cdot 0.4 = -0.6 + 1.6 = 1 \][/tex]
[tex]\[ CD_{23} = 0 \cdot (-0.4) + 3 \cdot 0.8 + 4 \cdot (-0.6) = 2.4 - 2.4 = 0 \][/tex]
[tex]\[ CD_{31} = 0 \cdot a + 2 \cdot 0 + 1 \cdot 0 = 0 \][/tex]
[tex]\[ CD_{32} = 0 \cdot b + 2 \cdot (-0.2) + 1 \cdot 0.4 = -0.4 + 0.4 = 0 \][/tex]
[tex]\[ CD_{33} = 0 \cdot (-0.4) + 2 \cdot 0.8 + 1 \cdot (-0.6) = 1.6 - 0.6 = 1 \][/tex]
So we have:
[tex]\[ CD = \begin{bmatrix} 2a & 2b - 0.2 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \][/tex]
For [tex]\(CD\)[/tex] to equal the identity matrix [tex]\(I\)[/tex], the elements in [tex]\(CD\)[/tex] should match the corresponding elements in [tex]\(I\)[/tex]:
1. From the [tex]\( (1, 1) \)[/tex] position:
[tex]\[ 2a = 1 \][/tex]
Thus,
[tex]\[ a = \frac{1}{2} = 0.5 \][/tex]
2. From the [tex]\( (1, 2) \)[/tex] position:
[tex]\[ 2b - 0.2 = 0 \][/tex]
Thus,
[tex]\[ 2b = 0.2 \][/tex]
[tex]\[ b = \frac{0.2}{2} = 0.1 \][/tex]
So the values of [tex]\(a\)[/tex] and [tex]\(b\)[/tex] that will make the equation [tex]\(CD = I\)[/tex] true are:
[tex]\[ a = 0.5 \][/tex]
[tex]\[ b = 0.1 \][/tex]
Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Find reliable answers at Westonci.ca. Visit us again for the latest updates and expert advice.