At Westonci.ca, we connect you with experts who provide detailed answers to your most pressing questions. Start exploring now! Experience the convenience of getting reliable answers to your questions from a vast network of knowledgeable experts. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.
Sagot :
To determine whether the Mean Value Theorem (MVT) applies to the function [tex]\( f(x)=x^{-\frac{1}{3}} \)[/tex] on the interval [tex]\(\left[\frac{1}{27}, 27\right]\)[/tex], we need to verify two conditions:
1. The function must be continuous on the closed interval [tex]\([a, b]\)[/tex].
2. The function must be differentiable on the open interval [tex]\((a, b)\)[/tex].
Let's analyze [tex]\(f(x) = x^{-\frac{1}{3}}\)[/tex].
### Continuity
The function [tex]\( f(x) = x^{-\frac{1}{3}} \)[/tex] is a power function and is continuous for all [tex]\( x > 0 \)[/tex]. The interval [tex]\(\left[\frac{1}{27}, 27\right]\)[/tex] is entirely positive (since [tex]\( \frac{1}{27} > 0 \)[/tex]), so [tex]\( f(x) \)[/tex] is continuous on [tex]\(\left[\frac{1}{27}, 27\right]\)[/tex].
### Differentiability
Next, we need to check if [tex]\( f(x) \)[/tex] is differentiable on [tex]\((\frac{1}{27}, 27)\)[/tex]. The derivative of [tex]\( f(x) \)[/tex] is
[tex]\[ f'(x) = \left( x^{-\frac{1}{3}} \right)' = -\frac{1}{3} x^{-\frac{4}{3}}. \][/tex]
[tex]\( f'(x) \)[/tex] is defined for all [tex]\( x > 0 \)[/tex]. In our interval [tex]\( (\frac{1}{27}, 27) \)[/tex], all [tex]\( x \)[/tex] values are greater than [tex]\( 0 \)[/tex], so [tex]\( f(x) \)[/tex] is differentiable on [tex]\((\frac{1}{27}, 27)\)[/tex].
Since both conditions of the Mean Value Theorem are satisfied, we can say that:
### a. Determine whether the Mean Value Theorem applies to the given function on the interval [tex]\([a, b]\)[/tex].
The correct answer is:
C. Yes, because the function is continuous on the interval [tex]\(\left[\frac{1}{27}, 27\right]\)[/tex] and differentiable on the interval [tex]\(\left(\frac{1}{27}, 27\right)\)[/tex].
### b. Finding the point(s) guaranteed to exist by the Mean Value Theorem
The Mean Value Theorem states that if [tex]\( f \)[/tex] is continuous on [tex]\([a, b]\)[/tex] and differentiable on [tex]\( (a, b) \)[/tex], then there exists at least one [tex]\( c \in (a, b) \)[/tex] such that:
[tex]\[ f'(c) = \frac{f(b) - f(a)}{b - a}. \][/tex]
Let's calculate the right side for our function:
[tex]\[ f(a) = \left( \frac{1}{27} \right)^{-\frac{1}{3}} = 27, \][/tex]
[tex]\[ f(b) = 27^{-\frac{1}{3}} = \frac{1}{3}, \][/tex]
[tex]\[ b - a = 27 - \frac{1}{27}. \][/tex]
Thus,
[tex]\[ \frac{f(b) - f(a)}{b - a} = \frac{\frac{1}{3} - 27}{27 - \frac{1}{27}}. \][/tex]
Simplify this expression:
[tex]\[ \frac{\frac{1}{3} - 27}{27 - \frac{1}{27}} = \frac{\frac{1}{3} - 27}{27 - \frac{1}{27}} = \frac{\frac{1}{3} - 27}{\frac{729 - 1}{27}} = \frac{\frac{1}{3} - 27}{\frac{728}{27}} = \frac{\frac{1}{3} - 27}{\frac{728}{27}} = \frac{\frac{1 - 81}{3}}{\frac{728}{27}} = \frac{\frac{-80}{3}}{\frac{728}{27}} = \frac{-80}{3} \times \frac{27}{728} = \frac{-80 \times 27}{3 \times 728} = \frac{-2160}{2184}.\][/tex]
Further simplification:
[tex]\[ \frac{-2160}{2184} = -0.989. \][/tex]
Next, set the derivative [tex]\( f'(x) = -\frac{1}{3} x^{-\frac{4}{3}} \)[/tex] equal to this value and solve for [tex]\( x \)[/tex]:
[tex]\[ -\frac{1}{3} x^{-\frac{4}{3}} = -0.989 \][/tex]
[tex]\[ x^{-\frac{4}{3}} = 2.967 \][/tex]
[tex]\[ x = \left( 2.967 \right)^{-\frac{3}{4}} \approx 0.461. \][/tex]
This point [tex]\( x \approx 0.461 \)[/tex] lies within [tex]\((\frac{1}{27}, 27)\)[/tex].
So, the point guaranteed to exist by the Mean Value Theorem is approximately [tex]\( c = 0.461 \)[/tex].
b. The correct choice is:
A. The point(s) guaranteed to exist is/are [tex]\( c = 0.461 \)[/tex].
1. The function must be continuous on the closed interval [tex]\([a, b]\)[/tex].
2. The function must be differentiable on the open interval [tex]\((a, b)\)[/tex].
Let's analyze [tex]\(f(x) = x^{-\frac{1}{3}}\)[/tex].
### Continuity
The function [tex]\( f(x) = x^{-\frac{1}{3}} \)[/tex] is a power function and is continuous for all [tex]\( x > 0 \)[/tex]. The interval [tex]\(\left[\frac{1}{27}, 27\right]\)[/tex] is entirely positive (since [tex]\( \frac{1}{27} > 0 \)[/tex]), so [tex]\( f(x) \)[/tex] is continuous on [tex]\(\left[\frac{1}{27}, 27\right]\)[/tex].
### Differentiability
Next, we need to check if [tex]\( f(x) \)[/tex] is differentiable on [tex]\((\frac{1}{27}, 27)\)[/tex]. The derivative of [tex]\( f(x) \)[/tex] is
[tex]\[ f'(x) = \left( x^{-\frac{1}{3}} \right)' = -\frac{1}{3} x^{-\frac{4}{3}}. \][/tex]
[tex]\( f'(x) \)[/tex] is defined for all [tex]\( x > 0 \)[/tex]. In our interval [tex]\( (\frac{1}{27}, 27) \)[/tex], all [tex]\( x \)[/tex] values are greater than [tex]\( 0 \)[/tex], so [tex]\( f(x) \)[/tex] is differentiable on [tex]\((\frac{1}{27}, 27)\)[/tex].
Since both conditions of the Mean Value Theorem are satisfied, we can say that:
### a. Determine whether the Mean Value Theorem applies to the given function on the interval [tex]\([a, b]\)[/tex].
The correct answer is:
C. Yes, because the function is continuous on the interval [tex]\(\left[\frac{1}{27}, 27\right]\)[/tex] and differentiable on the interval [tex]\(\left(\frac{1}{27}, 27\right)\)[/tex].
### b. Finding the point(s) guaranteed to exist by the Mean Value Theorem
The Mean Value Theorem states that if [tex]\( f \)[/tex] is continuous on [tex]\([a, b]\)[/tex] and differentiable on [tex]\( (a, b) \)[/tex], then there exists at least one [tex]\( c \in (a, b) \)[/tex] such that:
[tex]\[ f'(c) = \frac{f(b) - f(a)}{b - a}. \][/tex]
Let's calculate the right side for our function:
[tex]\[ f(a) = \left( \frac{1}{27} \right)^{-\frac{1}{3}} = 27, \][/tex]
[tex]\[ f(b) = 27^{-\frac{1}{3}} = \frac{1}{3}, \][/tex]
[tex]\[ b - a = 27 - \frac{1}{27}. \][/tex]
Thus,
[tex]\[ \frac{f(b) - f(a)}{b - a} = \frac{\frac{1}{3} - 27}{27 - \frac{1}{27}}. \][/tex]
Simplify this expression:
[tex]\[ \frac{\frac{1}{3} - 27}{27 - \frac{1}{27}} = \frac{\frac{1}{3} - 27}{27 - \frac{1}{27}} = \frac{\frac{1}{3} - 27}{\frac{729 - 1}{27}} = \frac{\frac{1}{3} - 27}{\frac{728}{27}} = \frac{\frac{1}{3} - 27}{\frac{728}{27}} = \frac{\frac{1 - 81}{3}}{\frac{728}{27}} = \frac{\frac{-80}{3}}{\frac{728}{27}} = \frac{-80}{3} \times \frac{27}{728} = \frac{-80 \times 27}{3 \times 728} = \frac{-2160}{2184}.\][/tex]
Further simplification:
[tex]\[ \frac{-2160}{2184} = -0.989. \][/tex]
Next, set the derivative [tex]\( f'(x) = -\frac{1}{3} x^{-\frac{4}{3}} \)[/tex] equal to this value and solve for [tex]\( x \)[/tex]:
[tex]\[ -\frac{1}{3} x^{-\frac{4}{3}} = -0.989 \][/tex]
[tex]\[ x^{-\frac{4}{3}} = 2.967 \][/tex]
[tex]\[ x = \left( 2.967 \right)^{-\frac{3}{4}} \approx 0.461. \][/tex]
This point [tex]\( x \approx 0.461 \)[/tex] lies within [tex]\((\frac{1}{27}, 27)\)[/tex].
So, the point guaranteed to exist by the Mean Value Theorem is approximately [tex]\( c = 0.461 \)[/tex].
b. The correct choice is:
A. The point(s) guaranteed to exist is/are [tex]\( c = 0.461 \)[/tex].
Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. We hope our answers were useful. Return anytime for more information and answers to any other questions you have. We're glad you chose Westonci.ca. Revisit us for updated answers from our knowledgeable team.