Explore Westonci.ca, the top Q&A platform where your questions are answered by professionals and enthusiasts alike. Join our platform to connect with experts ready to provide precise answers to your questions in different areas. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform.

Consider the following function on the given interval [tex]$[a, b]$[/tex]:

[tex]\[ f(x) = x^{-\frac{1}{3}} \][/tex]

on the interval [tex]\(\left[\frac{1}{27}, 27\right]\)[/tex].

a. Determine whether the Mean Value Theorem applies to the given function on the interval [tex]\([a, b]\)[/tex].

A. No, because the function is continuous on the interval [tex]\(\left[\frac{1}{27}, 27\right]\)[/tex], but is not differentiable on the interval [tex]\(\left(\frac{1}{27}, 27\right)\)[/tex].
B. No, because the function is not continuous on the interval [tex]\(\left[\frac{1}{27}, 27\right]\)[/tex] and is not differentiable on the interval [tex]\(\left(\frac{1}{27}, 27\right)\)[/tex].
C. Yes, because the function is continuous on the interval [tex]\(\left[\frac{1}{27}, 27\right]\)[/tex] and differentiable on the interval [tex]\(\left(\frac{1}{27}, 27\right)\)[/tex].
D. No, because the function is differentiable on the interval [tex]\(\left(\frac{1}{27}, 27\right)\)[/tex], but is not continuous on the interval [tex]\(\left[\frac{1}{27}, 27\right]\)[/tex].

b. If so, find the point(s) that are guaranteed to exist by the Mean Value Theorem.

A. The point(s) guaranteed to exist is/are [tex]\(c = \square\)[/tex]
(Type an exact answer. Use a comma to separate answers as needed.)


Sagot :

To determine whether the Mean Value Theorem (MVT) applies to the function [tex]\( f(x)=x^{-\frac{1}{3}} \)[/tex] on the interval [tex]\(\left[\frac{1}{27}, 27\right]\)[/tex], we need to verify two conditions:
1. The function must be continuous on the closed interval [tex]\([a, b]\)[/tex].
2. The function must be differentiable on the open interval [tex]\((a, b)\)[/tex].

Let's analyze [tex]\(f(x) = x^{-\frac{1}{3}}\)[/tex].

### Continuity
The function [tex]\( f(x) = x^{-\frac{1}{3}} \)[/tex] is a power function and is continuous for all [tex]\( x > 0 \)[/tex]. The interval [tex]\(\left[\frac{1}{27}, 27\right]\)[/tex] is entirely positive (since [tex]\( \frac{1}{27} > 0 \)[/tex]), so [tex]\( f(x) \)[/tex] is continuous on [tex]\(\left[\frac{1}{27}, 27\right]\)[/tex].

### Differentiability
Next, we need to check if [tex]\( f(x) \)[/tex] is differentiable on [tex]\((\frac{1}{27}, 27)\)[/tex]. The derivative of [tex]\( f(x) \)[/tex] is
[tex]\[ f'(x) = \left( x^{-\frac{1}{3}} \right)' = -\frac{1}{3} x^{-\frac{4}{3}}. \][/tex]

[tex]\( f'(x) \)[/tex] is defined for all [tex]\( x > 0 \)[/tex]. In our interval [tex]\( (\frac{1}{27}, 27) \)[/tex], all [tex]\( x \)[/tex] values are greater than [tex]\( 0 \)[/tex], so [tex]\( f(x) \)[/tex] is differentiable on [tex]\((\frac{1}{27}, 27)\)[/tex].

Since both conditions of the Mean Value Theorem are satisfied, we can say that:

### a. Determine whether the Mean Value Theorem applies to the given function on the interval [tex]\([a, b]\)[/tex].
The correct answer is:
C. Yes, because the function is continuous on the interval [tex]\(\left[\frac{1}{27}, 27\right]\)[/tex] and differentiable on the interval [tex]\(\left(\frac{1}{27}, 27\right)\)[/tex].

### b. Finding the point(s) guaranteed to exist by the Mean Value Theorem
The Mean Value Theorem states that if [tex]\( f \)[/tex] is continuous on [tex]\([a, b]\)[/tex] and differentiable on [tex]\( (a, b) \)[/tex], then there exists at least one [tex]\( c \in (a, b) \)[/tex] such that:
[tex]\[ f'(c) = \frac{f(b) - f(a)}{b - a}. \][/tex]

Let's calculate the right side for our function:
[tex]\[ f(a) = \left( \frac{1}{27} \right)^{-\frac{1}{3}} = 27, \][/tex]
[tex]\[ f(b) = 27^{-\frac{1}{3}} = \frac{1}{3}, \][/tex]
[tex]\[ b - a = 27 - \frac{1}{27}. \][/tex]

Thus,
[tex]\[ \frac{f(b) - f(a)}{b - a} = \frac{\frac{1}{3} - 27}{27 - \frac{1}{27}}. \][/tex]

Simplify this expression:
[tex]\[ \frac{\frac{1}{3} - 27}{27 - \frac{1}{27}} = \frac{\frac{1}{3} - 27}{27 - \frac{1}{27}} = \frac{\frac{1}{3} - 27}{\frac{729 - 1}{27}} = \frac{\frac{1}{3} - 27}{\frac{728}{27}} = \frac{\frac{1}{3} - 27}{\frac{728}{27}} = \frac{\frac{1 - 81}{3}}{\frac{728}{27}} = \frac{\frac{-80}{3}}{\frac{728}{27}} = \frac{-80}{3} \times \frac{27}{728} = \frac{-80 \times 27}{3 \times 728} = \frac{-2160}{2184}.\][/tex]

Further simplification:
[tex]\[ \frac{-2160}{2184} = -0.989. \][/tex]

Next, set the derivative [tex]\( f'(x) = -\frac{1}{3} x^{-\frac{4}{3}} \)[/tex] equal to this value and solve for [tex]\( x \)[/tex]:

[tex]\[ -\frac{1}{3} x^{-\frac{4}{3}} = -0.989 \][/tex]
[tex]\[ x^{-\frac{4}{3}} = 2.967 \][/tex]
[tex]\[ x = \left( 2.967 \right)^{-\frac{3}{4}} \approx 0.461. \][/tex]

This point [tex]\( x \approx 0.461 \)[/tex] lies within [tex]\((\frac{1}{27}, 27)\)[/tex].

So, the point guaranteed to exist by the Mean Value Theorem is approximately [tex]\( c = 0.461 \)[/tex].

b. The correct choice is:
A. The point(s) guaranteed to exist is/are [tex]\( c = 0.461 \)[/tex].