Westonci.ca is the best place to get answers to your questions, provided by a community of experienced and knowledgeable experts. Discover reliable solutions to your questions from a wide network of experts on our comprehensive Q&A platform. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals.
Sagot :
To solve for the other trigonometric values given [tex]\(\sin \theta\)[/tex] when [tex]\(\frac{\pi}{2} < \theta < \pi\)[/tex], we start with the Pythagorean identity [tex]\(\sin^2 \theta + \cos^2 \theta = 1\)[/tex].
1. We know that in the interval [tex]\(\frac{\pi}{2} < \theta < \pi\)[/tex], [tex]\(\sin \theta\)[/tex] is positive and [tex]\(\cos \theta\)[/tex] is negative.
2. The Pythagorean identity [tex]\(\sin^2 \theta + \cos^2 \theta = 1\)[/tex] equates to:
[tex]\[ \cos^2 \theta = 1 - \sin^2 \theta \][/tex]
3. Taking the square root of both sides provides two possible solutions for [tex]\(\cos \theta\)[/tex]:
[tex]\[ \cos \theta = \pm\sqrt{1 - \sin^2 \theta} \][/tex]
However, since [tex]\(\cos \theta\)[/tex] is negative in the interval [tex]\(\frac{\pi}{2} < \theta < \pi\)[/tex], we have:
[tex]\[ \cos \theta = -\sqrt{1 - \sin^2 \theta} \][/tex]
4. Once we have found the values of [tex]\(\sin \theta\)[/tex] and [tex]\(\cos \theta\)[/tex], we can determine all other trigonometric ratios using their definitions and the known values.
To summarize, the correct explanation is:
- The values of [tex]\(\sin \theta\)[/tex] and [tex]\(\cos \theta\)[/tex] represent the legs of a right triangle with a hypotenuse of 1. Since [tex]\(\theta\)[/tex] is in Quadrant II, [tex]\(\cos \theta\)[/tex] is negative. Therefore, solving for [tex]\(\cos \theta\)[/tex] finds the unknown leg, and then all other trigonometric values can be found.
Therefore, the best option is:
- The values of [tex]\(\sin \theta\)[/tex] and [tex]\(\cos \theta\)[/tex] represent the legs of a right triangle with a hypotenuse of 1; therefore, solving for [tex]\(\cos \theta\)[/tex] finds the unknown leg, and then all other trigonometric values can be found.
1. We know that in the interval [tex]\(\frac{\pi}{2} < \theta < \pi\)[/tex], [tex]\(\sin \theta\)[/tex] is positive and [tex]\(\cos \theta\)[/tex] is negative.
2. The Pythagorean identity [tex]\(\sin^2 \theta + \cos^2 \theta = 1\)[/tex] equates to:
[tex]\[ \cos^2 \theta = 1 - \sin^2 \theta \][/tex]
3. Taking the square root of both sides provides two possible solutions for [tex]\(\cos \theta\)[/tex]:
[tex]\[ \cos \theta = \pm\sqrt{1 - \sin^2 \theta} \][/tex]
However, since [tex]\(\cos \theta\)[/tex] is negative in the interval [tex]\(\frac{\pi}{2} < \theta < \pi\)[/tex], we have:
[tex]\[ \cos \theta = -\sqrt{1 - \sin^2 \theta} \][/tex]
4. Once we have found the values of [tex]\(\sin \theta\)[/tex] and [tex]\(\cos \theta\)[/tex], we can determine all other trigonometric ratios using their definitions and the known values.
To summarize, the correct explanation is:
- The values of [tex]\(\sin \theta\)[/tex] and [tex]\(\cos \theta\)[/tex] represent the legs of a right triangle with a hypotenuse of 1. Since [tex]\(\theta\)[/tex] is in Quadrant II, [tex]\(\cos \theta\)[/tex] is negative. Therefore, solving for [tex]\(\cos \theta\)[/tex] finds the unknown leg, and then all other trigonometric values can be found.
Therefore, the best option is:
- The values of [tex]\(\sin \theta\)[/tex] and [tex]\(\cos \theta\)[/tex] represent the legs of a right triangle with a hypotenuse of 1; therefore, solving for [tex]\(\cos \theta\)[/tex] finds the unknown leg, and then all other trigonometric values can be found.
We appreciate your time. Please come back anytime for the latest information and answers to your questions. Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. Stay curious and keep coming back to Westonci.ca for answers to all your burning questions.