Westonci.ca is the premier destination for reliable answers to your questions, provided by a community of experts. Explore our Q&A platform to find in-depth answers from a wide range of experts in different fields. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.
Sagot :
To determine the radius of the spherical grape, we need to use the relationship between the mass, density, and volume, followed by applying the formula for the volume of a sphere. Here is the step-by-step solution:
1. Calculate the volume of the grape:
- The formula for volume (V) based on mass (m) and density (d) is given by:
[tex]\[ V = \frac{m}{d} \][/tex]
- Substitute the given values: mass [tex]\( m = 8.4 \)[/tex] grams and density [tex]\( d = 2 \)[/tex] grams per cubic centimeter:
[tex]\[ V = \frac{8.4}{2} = 4.2 \text{ cubic centimeters} \][/tex]
2. Relate the volume of the grape to the volume of a sphere:
- The formula for the volume of a sphere is:
[tex]\[ V = \frac{4}{3} \pi r^3 \][/tex]
- To find the radius [tex]\( r \)[/tex], solve for [tex]\( r^3 \)[/tex]:
[tex]\[ r^3 = \frac{3V}{4\pi} \][/tex]
3. Substitute the volume into the equation:
- Using [tex]\( V = 4.2 \)[/tex] cubic centimeters:
[tex]\[ r^3 = \frac{3 \times 4.2}{4\pi} \approx \frac{12.6}{12.566370614359172} \approx 1.0026761414789407 \][/tex]
4. Calculate the radius by taking the cube root of [tex]\( r^3 \)[/tex]:
- To find [tex]\( r \)[/tex], take the cube root of [tex]\( r^3 \)[/tex]:
[tex]\[ r = (1.0026761414789407)^{\frac{1}{3}} \approx 1.00089125259248 \text{ centimeters} \][/tex]
5. Round the radius to the nearest tenth:
- The radius is approximately [tex]\( 1.00089125259248 \)[/tex] centimeters.
- Rounding this value to the nearest tenth:
[tex]\[ r \approx 1.0 \text{ centimeters} \][/tex]
Thus, the radius of the grape is [tex]\( 1.0 \)[/tex] cm when rounded to the nearest tenth of a centimeter.
1. Calculate the volume of the grape:
- The formula for volume (V) based on mass (m) and density (d) is given by:
[tex]\[ V = \frac{m}{d} \][/tex]
- Substitute the given values: mass [tex]\( m = 8.4 \)[/tex] grams and density [tex]\( d = 2 \)[/tex] grams per cubic centimeter:
[tex]\[ V = \frac{8.4}{2} = 4.2 \text{ cubic centimeters} \][/tex]
2. Relate the volume of the grape to the volume of a sphere:
- The formula for the volume of a sphere is:
[tex]\[ V = \frac{4}{3} \pi r^3 \][/tex]
- To find the radius [tex]\( r \)[/tex], solve for [tex]\( r^3 \)[/tex]:
[tex]\[ r^3 = \frac{3V}{4\pi} \][/tex]
3. Substitute the volume into the equation:
- Using [tex]\( V = 4.2 \)[/tex] cubic centimeters:
[tex]\[ r^3 = \frac{3 \times 4.2}{4\pi} \approx \frac{12.6}{12.566370614359172} \approx 1.0026761414789407 \][/tex]
4. Calculate the radius by taking the cube root of [tex]\( r^3 \)[/tex]:
- To find [tex]\( r \)[/tex], take the cube root of [tex]\( r^3 \)[/tex]:
[tex]\[ r = (1.0026761414789407)^{\frac{1}{3}} \approx 1.00089125259248 \text{ centimeters} \][/tex]
5. Round the radius to the nearest tenth:
- The radius is approximately [tex]\( 1.00089125259248 \)[/tex] centimeters.
- Rounding this value to the nearest tenth:
[tex]\[ r \approx 1.0 \text{ centimeters} \][/tex]
Thus, the radius of the grape is [tex]\( 1.0 \)[/tex] cm when rounded to the nearest tenth of a centimeter.
We hope this information was helpful. Feel free to return anytime for more answers to your questions and concerns. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Thank you for using Westonci.ca. Come back for more in-depth answers to all your queries.