At Westonci.ca, we make it easy for you to get the answers you need from a community of knowledgeable individuals. Discover a wealth of knowledge from professionals across various disciplines on our user-friendly Q&A platform. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform.
Sagot :
Let's analyze the given function [tex]\( f(x) = 4x^{-\frac{1}{3}} \)[/tex] on the interval [tex]\(\left[\frac{1}{8}, 8\right]\)[/tex] to determine whether the Mean Value Theorem (MVT) applies.
### Step-by-Step Solution
#### Part (a): Applying Mean Value Theorem (MVT)
1. Check Continuity:
The first condition for MVT to hold is that the function must be continuous on the closed interval [tex]\([a, b] = \left[\frac{1}{8}, 8\right]\)[/tex].
For [tex]\( f(x) = 4x^{-\frac{1}{3}} \)[/tex]:
- The function is defined for all [tex]\( x \)[/tex] in the interval [tex]\(\left[\frac{1}{8}, 8\right]\)[/tex].
- As [tex]\( x \)[/tex] approaches [tex]\(\frac{1}{8}\)[/tex] from the right and [tex]\(8\)[/tex] from the left, the function does not approach infinity or any undefined value.
Hence, it can be inferred that [tex]\( f(x) \)[/tex] is continuous on [tex]\(\left[\frac{1}{8}, 8\right]\)[/tex].
2. Check Differentiability:
The second condition for MVT to apply is that the function must be differentiable on the open interval [tex]\((a, b) = \left(\frac{1}{8}, 8\right]\)[/tex].
Take the derivative of [tex]\( f(x) \)[/tex]:
[tex]\[ f(x) = 4x^{-\frac{1}{3}} \][/tex]
[tex]\[ f'(x) = \frac{d}{dx} \left( 4x^{-\frac{1}{3}} \right) = 4 \left( -\frac{1}{3} \right) x^{-\frac{1}{3} - 1} = -\frac{4}{3} x^{-\frac{4}{3}} \][/tex]
- The derivative exists for all [tex]\( x \)[/tex] in the interval [tex]\(\left(\frac{1}{8}, 8\right)\)[/tex].
Therefore, [tex]\( f(x) \)[/tex] is differentiable on [tex]\(\left(\frac{1}{8}, 8\right]\)[/tex].
Conclusion:
Since [tex]\( f(x) = 4x^{-\frac{1}{3}} \)[/tex] is continuous on [tex]\(\left[\frac{1}{8}, 8\right]\)[/tex] and differentiable on [tex]\(\left(\frac{1}{8}, 8\right]\)[/tex], the Mean Value Theorem applies.
Thus, the correct answer is:
D. Yes, because the function is continuous on the interval [tex]\(\left[\frac{1}{8}, 8\right]\)[/tex] and differentiable on the interval [tex]\(\left(\frac{1}{8}, 8\right]\)[/tex].
#### Part (b): Find the Point(s) Guaranteed by the MVT
If the MVT applies, it guarantees at least one point [tex]\( c \)[/tex] in the interval [tex]\(\left(\frac{1}{8}, 8\right)\)[/tex] such that:
[tex]\[ f'(c) = \frac{f(b) - f(a)}{b - a} \][/tex]
First, calculate [tex]\( f(a) \)[/tex] and [tex]\( f(b) \)[/tex]:
[tex]\[ f\left(\frac{1}{8}\right) = 4 \left(\frac{1}{8}\right)^{-\frac{1}{3}} = 4 \cdot 2 = 8 \][/tex]
[tex]\[ f(8) = 4 \cdot 8^{-\frac{1}{3}} = 4 \cdot \frac{1}{2} = 2 \][/tex]
Now, calculate the slope:
[tex]\[ \frac{f(b) - f(a)}{b - a} = \frac{2 - 8}{8 - \frac{1}{8}} = \frac{-6}{8 - 0.125} = \frac{-6}{7.875} = -\frac{24}{31.5} = -\frac{8}{10.5} = -\frac{8}{10.5} = -\frac{16}{21} \][/tex]
Next, solve for [tex]\( c \)[/tex] such that [tex]\( f'(c) = -\frac{16}{21} \)[/tex]:
[tex]\[ f'(x) = -\frac{4}{3} x^{-\frac{4}{3}} = -\frac{16}{21} \][/tex]
[tex]\[ -\frac{4}{3} x^{-\frac{4}{3}} = -\frac{16}{21} \][/tex]
[tex]\[ \frac{4}{3} x^{-\frac{4}{3}} = \frac{16}{21} \][/tex]
[tex]\[ x^{-\frac{4}{3}} = \frac{16}{21} \cdot \frac{3}{4} = \frac{12}{21} = \frac{4}{7} \][/tex]
[tex]\[ x^{-\frac{4}{3}} = \frac{4}{7} \][/tex]
[tex]\[ x^{4/3} = \frac{7}{4} \][/tex]
[tex]\[ x = \left( \frac{7}{4} \right)^{3/4} \][/tex]
No valid solution exists within the interval [tex]\(\left(\frac{1}{8}, 8\right)\)[/tex].
Therefore, the correct answer is:
B. The Mean Value Theorem does not apply to [tex]\(f(x)\)[/tex].
### Step-by-Step Solution
#### Part (a): Applying Mean Value Theorem (MVT)
1. Check Continuity:
The first condition for MVT to hold is that the function must be continuous on the closed interval [tex]\([a, b] = \left[\frac{1}{8}, 8\right]\)[/tex].
For [tex]\( f(x) = 4x^{-\frac{1}{3}} \)[/tex]:
- The function is defined for all [tex]\( x \)[/tex] in the interval [tex]\(\left[\frac{1}{8}, 8\right]\)[/tex].
- As [tex]\( x \)[/tex] approaches [tex]\(\frac{1}{8}\)[/tex] from the right and [tex]\(8\)[/tex] from the left, the function does not approach infinity or any undefined value.
Hence, it can be inferred that [tex]\( f(x) \)[/tex] is continuous on [tex]\(\left[\frac{1}{8}, 8\right]\)[/tex].
2. Check Differentiability:
The second condition for MVT to apply is that the function must be differentiable on the open interval [tex]\((a, b) = \left(\frac{1}{8}, 8\right]\)[/tex].
Take the derivative of [tex]\( f(x) \)[/tex]:
[tex]\[ f(x) = 4x^{-\frac{1}{3}} \][/tex]
[tex]\[ f'(x) = \frac{d}{dx} \left( 4x^{-\frac{1}{3}} \right) = 4 \left( -\frac{1}{3} \right) x^{-\frac{1}{3} - 1} = -\frac{4}{3} x^{-\frac{4}{3}} \][/tex]
- The derivative exists for all [tex]\( x \)[/tex] in the interval [tex]\(\left(\frac{1}{8}, 8\right)\)[/tex].
Therefore, [tex]\( f(x) \)[/tex] is differentiable on [tex]\(\left(\frac{1}{8}, 8\right]\)[/tex].
Conclusion:
Since [tex]\( f(x) = 4x^{-\frac{1}{3}} \)[/tex] is continuous on [tex]\(\left[\frac{1}{8}, 8\right]\)[/tex] and differentiable on [tex]\(\left(\frac{1}{8}, 8\right]\)[/tex], the Mean Value Theorem applies.
Thus, the correct answer is:
D. Yes, because the function is continuous on the interval [tex]\(\left[\frac{1}{8}, 8\right]\)[/tex] and differentiable on the interval [tex]\(\left(\frac{1}{8}, 8\right]\)[/tex].
#### Part (b): Find the Point(s) Guaranteed by the MVT
If the MVT applies, it guarantees at least one point [tex]\( c \)[/tex] in the interval [tex]\(\left(\frac{1}{8}, 8\right)\)[/tex] such that:
[tex]\[ f'(c) = \frac{f(b) - f(a)}{b - a} \][/tex]
First, calculate [tex]\( f(a) \)[/tex] and [tex]\( f(b) \)[/tex]:
[tex]\[ f\left(\frac{1}{8}\right) = 4 \left(\frac{1}{8}\right)^{-\frac{1}{3}} = 4 \cdot 2 = 8 \][/tex]
[tex]\[ f(8) = 4 \cdot 8^{-\frac{1}{3}} = 4 \cdot \frac{1}{2} = 2 \][/tex]
Now, calculate the slope:
[tex]\[ \frac{f(b) - f(a)}{b - a} = \frac{2 - 8}{8 - \frac{1}{8}} = \frac{-6}{8 - 0.125} = \frac{-6}{7.875} = -\frac{24}{31.5} = -\frac{8}{10.5} = -\frac{8}{10.5} = -\frac{16}{21} \][/tex]
Next, solve for [tex]\( c \)[/tex] such that [tex]\( f'(c) = -\frac{16}{21} \)[/tex]:
[tex]\[ f'(x) = -\frac{4}{3} x^{-\frac{4}{3}} = -\frac{16}{21} \][/tex]
[tex]\[ -\frac{4}{3} x^{-\frac{4}{3}} = -\frac{16}{21} \][/tex]
[tex]\[ \frac{4}{3} x^{-\frac{4}{3}} = \frac{16}{21} \][/tex]
[tex]\[ x^{-\frac{4}{3}} = \frac{16}{21} \cdot \frac{3}{4} = \frac{12}{21} = \frac{4}{7} \][/tex]
[tex]\[ x^{-\frac{4}{3}} = \frac{4}{7} \][/tex]
[tex]\[ x^{4/3} = \frac{7}{4} \][/tex]
[tex]\[ x = \left( \frac{7}{4} \right)^{3/4} \][/tex]
No valid solution exists within the interval [tex]\(\left(\frac{1}{8}, 8\right)\)[/tex].
Therefore, the correct answer is:
B. The Mean Value Theorem does not apply to [tex]\(f(x)\)[/tex].
We hope this information was helpful. Feel free to return anytime for more answers to your questions and concerns. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Get the answers you need at Westonci.ca. Stay informed by returning for our latest expert advice.