Discover the answers to your questions at Westonci.ca, where experts share their knowledge and insights with you. Join our platform to connect with experts ready to provide accurate answers to your questions in various fields. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform.
Sagot :
Let's analyze the given function [tex]\( f(x) = 4x^{-\frac{1}{3}} \)[/tex] on the interval [tex]\(\left[\frac{1}{8}, 8\right]\)[/tex] to determine whether the Mean Value Theorem (MVT) applies.
### Step-by-Step Solution
#### Part (a): Applying Mean Value Theorem (MVT)
1. Check Continuity:
The first condition for MVT to hold is that the function must be continuous on the closed interval [tex]\([a, b] = \left[\frac{1}{8}, 8\right]\)[/tex].
For [tex]\( f(x) = 4x^{-\frac{1}{3}} \)[/tex]:
- The function is defined for all [tex]\( x \)[/tex] in the interval [tex]\(\left[\frac{1}{8}, 8\right]\)[/tex].
- As [tex]\( x \)[/tex] approaches [tex]\(\frac{1}{8}\)[/tex] from the right and [tex]\(8\)[/tex] from the left, the function does not approach infinity or any undefined value.
Hence, it can be inferred that [tex]\( f(x) \)[/tex] is continuous on [tex]\(\left[\frac{1}{8}, 8\right]\)[/tex].
2. Check Differentiability:
The second condition for MVT to apply is that the function must be differentiable on the open interval [tex]\((a, b) = \left(\frac{1}{8}, 8\right]\)[/tex].
Take the derivative of [tex]\( f(x) \)[/tex]:
[tex]\[ f(x) = 4x^{-\frac{1}{3}} \][/tex]
[tex]\[ f'(x) = \frac{d}{dx} \left( 4x^{-\frac{1}{3}} \right) = 4 \left( -\frac{1}{3} \right) x^{-\frac{1}{3} - 1} = -\frac{4}{3} x^{-\frac{4}{3}} \][/tex]
- The derivative exists for all [tex]\( x \)[/tex] in the interval [tex]\(\left(\frac{1}{8}, 8\right)\)[/tex].
Therefore, [tex]\( f(x) \)[/tex] is differentiable on [tex]\(\left(\frac{1}{8}, 8\right]\)[/tex].
Conclusion:
Since [tex]\( f(x) = 4x^{-\frac{1}{3}} \)[/tex] is continuous on [tex]\(\left[\frac{1}{8}, 8\right]\)[/tex] and differentiable on [tex]\(\left(\frac{1}{8}, 8\right]\)[/tex], the Mean Value Theorem applies.
Thus, the correct answer is:
D. Yes, because the function is continuous on the interval [tex]\(\left[\frac{1}{8}, 8\right]\)[/tex] and differentiable on the interval [tex]\(\left(\frac{1}{8}, 8\right]\)[/tex].
#### Part (b): Find the Point(s) Guaranteed by the MVT
If the MVT applies, it guarantees at least one point [tex]\( c \)[/tex] in the interval [tex]\(\left(\frac{1}{8}, 8\right)\)[/tex] such that:
[tex]\[ f'(c) = \frac{f(b) - f(a)}{b - a} \][/tex]
First, calculate [tex]\( f(a) \)[/tex] and [tex]\( f(b) \)[/tex]:
[tex]\[ f\left(\frac{1}{8}\right) = 4 \left(\frac{1}{8}\right)^{-\frac{1}{3}} = 4 \cdot 2 = 8 \][/tex]
[tex]\[ f(8) = 4 \cdot 8^{-\frac{1}{3}} = 4 \cdot \frac{1}{2} = 2 \][/tex]
Now, calculate the slope:
[tex]\[ \frac{f(b) - f(a)}{b - a} = \frac{2 - 8}{8 - \frac{1}{8}} = \frac{-6}{8 - 0.125} = \frac{-6}{7.875} = -\frac{24}{31.5} = -\frac{8}{10.5} = -\frac{8}{10.5} = -\frac{16}{21} \][/tex]
Next, solve for [tex]\( c \)[/tex] such that [tex]\( f'(c) = -\frac{16}{21} \)[/tex]:
[tex]\[ f'(x) = -\frac{4}{3} x^{-\frac{4}{3}} = -\frac{16}{21} \][/tex]
[tex]\[ -\frac{4}{3} x^{-\frac{4}{3}} = -\frac{16}{21} \][/tex]
[tex]\[ \frac{4}{3} x^{-\frac{4}{3}} = \frac{16}{21} \][/tex]
[tex]\[ x^{-\frac{4}{3}} = \frac{16}{21} \cdot \frac{3}{4} = \frac{12}{21} = \frac{4}{7} \][/tex]
[tex]\[ x^{-\frac{4}{3}} = \frac{4}{7} \][/tex]
[tex]\[ x^{4/3} = \frac{7}{4} \][/tex]
[tex]\[ x = \left( \frac{7}{4} \right)^{3/4} \][/tex]
No valid solution exists within the interval [tex]\(\left(\frac{1}{8}, 8\right)\)[/tex].
Therefore, the correct answer is:
B. The Mean Value Theorem does not apply to [tex]\(f(x)\)[/tex].
### Step-by-Step Solution
#### Part (a): Applying Mean Value Theorem (MVT)
1. Check Continuity:
The first condition for MVT to hold is that the function must be continuous on the closed interval [tex]\([a, b] = \left[\frac{1}{8}, 8\right]\)[/tex].
For [tex]\( f(x) = 4x^{-\frac{1}{3}} \)[/tex]:
- The function is defined for all [tex]\( x \)[/tex] in the interval [tex]\(\left[\frac{1}{8}, 8\right]\)[/tex].
- As [tex]\( x \)[/tex] approaches [tex]\(\frac{1}{8}\)[/tex] from the right and [tex]\(8\)[/tex] from the left, the function does not approach infinity or any undefined value.
Hence, it can be inferred that [tex]\( f(x) \)[/tex] is continuous on [tex]\(\left[\frac{1}{8}, 8\right]\)[/tex].
2. Check Differentiability:
The second condition for MVT to apply is that the function must be differentiable on the open interval [tex]\((a, b) = \left(\frac{1}{8}, 8\right]\)[/tex].
Take the derivative of [tex]\( f(x) \)[/tex]:
[tex]\[ f(x) = 4x^{-\frac{1}{3}} \][/tex]
[tex]\[ f'(x) = \frac{d}{dx} \left( 4x^{-\frac{1}{3}} \right) = 4 \left( -\frac{1}{3} \right) x^{-\frac{1}{3} - 1} = -\frac{4}{3} x^{-\frac{4}{3}} \][/tex]
- The derivative exists for all [tex]\( x \)[/tex] in the interval [tex]\(\left(\frac{1}{8}, 8\right)\)[/tex].
Therefore, [tex]\( f(x) \)[/tex] is differentiable on [tex]\(\left(\frac{1}{8}, 8\right]\)[/tex].
Conclusion:
Since [tex]\( f(x) = 4x^{-\frac{1}{3}} \)[/tex] is continuous on [tex]\(\left[\frac{1}{8}, 8\right]\)[/tex] and differentiable on [tex]\(\left(\frac{1}{8}, 8\right]\)[/tex], the Mean Value Theorem applies.
Thus, the correct answer is:
D. Yes, because the function is continuous on the interval [tex]\(\left[\frac{1}{8}, 8\right]\)[/tex] and differentiable on the interval [tex]\(\left(\frac{1}{8}, 8\right]\)[/tex].
#### Part (b): Find the Point(s) Guaranteed by the MVT
If the MVT applies, it guarantees at least one point [tex]\( c \)[/tex] in the interval [tex]\(\left(\frac{1}{8}, 8\right)\)[/tex] such that:
[tex]\[ f'(c) = \frac{f(b) - f(a)}{b - a} \][/tex]
First, calculate [tex]\( f(a) \)[/tex] and [tex]\( f(b) \)[/tex]:
[tex]\[ f\left(\frac{1}{8}\right) = 4 \left(\frac{1}{8}\right)^{-\frac{1}{3}} = 4 \cdot 2 = 8 \][/tex]
[tex]\[ f(8) = 4 \cdot 8^{-\frac{1}{3}} = 4 \cdot \frac{1}{2} = 2 \][/tex]
Now, calculate the slope:
[tex]\[ \frac{f(b) - f(a)}{b - a} = \frac{2 - 8}{8 - \frac{1}{8}} = \frac{-6}{8 - 0.125} = \frac{-6}{7.875} = -\frac{24}{31.5} = -\frac{8}{10.5} = -\frac{8}{10.5} = -\frac{16}{21} \][/tex]
Next, solve for [tex]\( c \)[/tex] such that [tex]\( f'(c) = -\frac{16}{21} \)[/tex]:
[tex]\[ f'(x) = -\frac{4}{3} x^{-\frac{4}{3}} = -\frac{16}{21} \][/tex]
[tex]\[ -\frac{4}{3} x^{-\frac{4}{3}} = -\frac{16}{21} \][/tex]
[tex]\[ \frac{4}{3} x^{-\frac{4}{3}} = \frac{16}{21} \][/tex]
[tex]\[ x^{-\frac{4}{3}} = \frac{16}{21} \cdot \frac{3}{4} = \frac{12}{21} = \frac{4}{7} \][/tex]
[tex]\[ x^{-\frac{4}{3}} = \frac{4}{7} \][/tex]
[tex]\[ x^{4/3} = \frac{7}{4} \][/tex]
[tex]\[ x = \left( \frac{7}{4} \right)^{3/4} \][/tex]
No valid solution exists within the interval [tex]\(\left(\frac{1}{8}, 8\right)\)[/tex].
Therefore, the correct answer is:
B. The Mean Value Theorem does not apply to [tex]\(f(x)\)[/tex].
Thank you for visiting our platform. We hope you found the answers you were looking for. Come back anytime you need more information. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Thank you for choosing Westonci.ca as your information source. We look forward to your next visit.