Westonci.ca is your trusted source for finding answers to a wide range of questions, backed by a knowledgeable community. Connect with professionals ready to provide precise answers to your questions on our comprehensive Q&A platform. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.
Sagot :
Let's analyze the given function [tex]\( f(x) = 4x^{-\frac{1}{3}} \)[/tex] on the interval [tex]\(\left[\frac{1}{8}, 8\right]\)[/tex] to determine whether the Mean Value Theorem (MVT) applies.
### Step-by-Step Solution
#### Part (a): Applying Mean Value Theorem (MVT)
1. Check Continuity:
The first condition for MVT to hold is that the function must be continuous on the closed interval [tex]\([a, b] = \left[\frac{1}{8}, 8\right]\)[/tex].
For [tex]\( f(x) = 4x^{-\frac{1}{3}} \)[/tex]:
- The function is defined for all [tex]\( x \)[/tex] in the interval [tex]\(\left[\frac{1}{8}, 8\right]\)[/tex].
- As [tex]\( x \)[/tex] approaches [tex]\(\frac{1}{8}\)[/tex] from the right and [tex]\(8\)[/tex] from the left, the function does not approach infinity or any undefined value.
Hence, it can be inferred that [tex]\( f(x) \)[/tex] is continuous on [tex]\(\left[\frac{1}{8}, 8\right]\)[/tex].
2. Check Differentiability:
The second condition for MVT to apply is that the function must be differentiable on the open interval [tex]\((a, b) = \left(\frac{1}{8}, 8\right]\)[/tex].
Take the derivative of [tex]\( f(x) \)[/tex]:
[tex]\[ f(x) = 4x^{-\frac{1}{3}} \][/tex]
[tex]\[ f'(x) = \frac{d}{dx} \left( 4x^{-\frac{1}{3}} \right) = 4 \left( -\frac{1}{3} \right) x^{-\frac{1}{3} - 1} = -\frac{4}{3} x^{-\frac{4}{3}} \][/tex]
- The derivative exists for all [tex]\( x \)[/tex] in the interval [tex]\(\left(\frac{1}{8}, 8\right)\)[/tex].
Therefore, [tex]\( f(x) \)[/tex] is differentiable on [tex]\(\left(\frac{1}{8}, 8\right]\)[/tex].
Conclusion:
Since [tex]\( f(x) = 4x^{-\frac{1}{3}} \)[/tex] is continuous on [tex]\(\left[\frac{1}{8}, 8\right]\)[/tex] and differentiable on [tex]\(\left(\frac{1}{8}, 8\right]\)[/tex], the Mean Value Theorem applies.
Thus, the correct answer is:
D. Yes, because the function is continuous on the interval [tex]\(\left[\frac{1}{8}, 8\right]\)[/tex] and differentiable on the interval [tex]\(\left(\frac{1}{8}, 8\right]\)[/tex].
#### Part (b): Find the Point(s) Guaranteed by the MVT
If the MVT applies, it guarantees at least one point [tex]\( c \)[/tex] in the interval [tex]\(\left(\frac{1}{8}, 8\right)\)[/tex] such that:
[tex]\[ f'(c) = \frac{f(b) - f(a)}{b - a} \][/tex]
First, calculate [tex]\( f(a) \)[/tex] and [tex]\( f(b) \)[/tex]:
[tex]\[ f\left(\frac{1}{8}\right) = 4 \left(\frac{1}{8}\right)^{-\frac{1}{3}} = 4 \cdot 2 = 8 \][/tex]
[tex]\[ f(8) = 4 \cdot 8^{-\frac{1}{3}} = 4 \cdot \frac{1}{2} = 2 \][/tex]
Now, calculate the slope:
[tex]\[ \frac{f(b) - f(a)}{b - a} = \frac{2 - 8}{8 - \frac{1}{8}} = \frac{-6}{8 - 0.125} = \frac{-6}{7.875} = -\frac{24}{31.5} = -\frac{8}{10.5} = -\frac{8}{10.5} = -\frac{16}{21} \][/tex]
Next, solve for [tex]\( c \)[/tex] such that [tex]\( f'(c) = -\frac{16}{21} \)[/tex]:
[tex]\[ f'(x) = -\frac{4}{3} x^{-\frac{4}{3}} = -\frac{16}{21} \][/tex]
[tex]\[ -\frac{4}{3} x^{-\frac{4}{3}} = -\frac{16}{21} \][/tex]
[tex]\[ \frac{4}{3} x^{-\frac{4}{3}} = \frac{16}{21} \][/tex]
[tex]\[ x^{-\frac{4}{3}} = \frac{16}{21} \cdot \frac{3}{4} = \frac{12}{21} = \frac{4}{7} \][/tex]
[tex]\[ x^{-\frac{4}{3}} = \frac{4}{7} \][/tex]
[tex]\[ x^{4/3} = \frac{7}{4} \][/tex]
[tex]\[ x = \left( \frac{7}{4} \right)^{3/4} \][/tex]
No valid solution exists within the interval [tex]\(\left(\frac{1}{8}, 8\right)\)[/tex].
Therefore, the correct answer is:
B. The Mean Value Theorem does not apply to [tex]\(f(x)\)[/tex].
### Step-by-Step Solution
#### Part (a): Applying Mean Value Theorem (MVT)
1. Check Continuity:
The first condition for MVT to hold is that the function must be continuous on the closed interval [tex]\([a, b] = \left[\frac{1}{8}, 8\right]\)[/tex].
For [tex]\( f(x) = 4x^{-\frac{1}{3}} \)[/tex]:
- The function is defined for all [tex]\( x \)[/tex] in the interval [tex]\(\left[\frac{1}{8}, 8\right]\)[/tex].
- As [tex]\( x \)[/tex] approaches [tex]\(\frac{1}{8}\)[/tex] from the right and [tex]\(8\)[/tex] from the left, the function does not approach infinity or any undefined value.
Hence, it can be inferred that [tex]\( f(x) \)[/tex] is continuous on [tex]\(\left[\frac{1}{8}, 8\right]\)[/tex].
2. Check Differentiability:
The second condition for MVT to apply is that the function must be differentiable on the open interval [tex]\((a, b) = \left(\frac{1}{8}, 8\right]\)[/tex].
Take the derivative of [tex]\( f(x) \)[/tex]:
[tex]\[ f(x) = 4x^{-\frac{1}{3}} \][/tex]
[tex]\[ f'(x) = \frac{d}{dx} \left( 4x^{-\frac{1}{3}} \right) = 4 \left( -\frac{1}{3} \right) x^{-\frac{1}{3} - 1} = -\frac{4}{3} x^{-\frac{4}{3}} \][/tex]
- The derivative exists for all [tex]\( x \)[/tex] in the interval [tex]\(\left(\frac{1}{8}, 8\right)\)[/tex].
Therefore, [tex]\( f(x) \)[/tex] is differentiable on [tex]\(\left(\frac{1}{8}, 8\right]\)[/tex].
Conclusion:
Since [tex]\( f(x) = 4x^{-\frac{1}{3}} \)[/tex] is continuous on [tex]\(\left[\frac{1}{8}, 8\right]\)[/tex] and differentiable on [tex]\(\left(\frac{1}{8}, 8\right]\)[/tex], the Mean Value Theorem applies.
Thus, the correct answer is:
D. Yes, because the function is continuous on the interval [tex]\(\left[\frac{1}{8}, 8\right]\)[/tex] and differentiable on the interval [tex]\(\left(\frac{1}{8}, 8\right]\)[/tex].
#### Part (b): Find the Point(s) Guaranteed by the MVT
If the MVT applies, it guarantees at least one point [tex]\( c \)[/tex] in the interval [tex]\(\left(\frac{1}{8}, 8\right)\)[/tex] such that:
[tex]\[ f'(c) = \frac{f(b) - f(a)}{b - a} \][/tex]
First, calculate [tex]\( f(a) \)[/tex] and [tex]\( f(b) \)[/tex]:
[tex]\[ f\left(\frac{1}{8}\right) = 4 \left(\frac{1}{8}\right)^{-\frac{1}{3}} = 4 \cdot 2 = 8 \][/tex]
[tex]\[ f(8) = 4 \cdot 8^{-\frac{1}{3}} = 4 \cdot \frac{1}{2} = 2 \][/tex]
Now, calculate the slope:
[tex]\[ \frac{f(b) - f(a)}{b - a} = \frac{2 - 8}{8 - \frac{1}{8}} = \frac{-6}{8 - 0.125} = \frac{-6}{7.875} = -\frac{24}{31.5} = -\frac{8}{10.5} = -\frac{8}{10.5} = -\frac{16}{21} \][/tex]
Next, solve for [tex]\( c \)[/tex] such that [tex]\( f'(c) = -\frac{16}{21} \)[/tex]:
[tex]\[ f'(x) = -\frac{4}{3} x^{-\frac{4}{3}} = -\frac{16}{21} \][/tex]
[tex]\[ -\frac{4}{3} x^{-\frac{4}{3}} = -\frac{16}{21} \][/tex]
[tex]\[ \frac{4}{3} x^{-\frac{4}{3}} = \frac{16}{21} \][/tex]
[tex]\[ x^{-\frac{4}{3}} = \frac{16}{21} \cdot \frac{3}{4} = \frac{12}{21} = \frac{4}{7} \][/tex]
[tex]\[ x^{-\frac{4}{3}} = \frac{4}{7} \][/tex]
[tex]\[ x^{4/3} = \frac{7}{4} \][/tex]
[tex]\[ x = \left( \frac{7}{4} \right)^{3/4} \][/tex]
No valid solution exists within the interval [tex]\(\left(\frac{1}{8}, 8\right)\)[/tex].
Therefore, the correct answer is:
B. The Mean Value Theorem does not apply to [tex]\(f(x)\)[/tex].
We hope this information was helpful. Feel free to return anytime for more answers to your questions and concerns. We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Find reliable answers at Westonci.ca. Visit us again for the latest updates and expert advice.