Discover a wealth of knowledge at Westonci.ca, where experts provide answers to your most pressing questions. Get quick and reliable solutions to your questions from knowledgeable professionals on our comprehensive Q&A platform. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform.
Sagot :
Certainly! Let's address each part of the problem step by step with clear explanations.
### Part 6: Write Rational Numbers
A rational number is defined as a number that can be expressed as the quotient or fraction [tex]\(\frac{a}{b}\)[/tex] of two integers, where [tex]\(a\)[/tex] (the numerator) and [tex]\(b\)[/tex] (the denominator), and [tex]\(b \neq 0\)[/tex].
(a) Rational number with numerator [tex]\(-3\)[/tex] and denominator [tex]\(4\)[/tex]:
[tex]\[ \frac{-3}{4} = -0.75 \][/tex]
(b) Rational number with numerator [tex]\(-16\)[/tex] and denominator [tex]\(-32\)[/tex]:
[tex]\[ \frac{-16}{-32} = \frac{16}{32} = 0.5 \][/tex]
Since the negative signs cancel each other out, this simplifies to [tex]\(\frac{1}{2}\)[/tex], which is [tex]\(0.5\)[/tex].
(c) Rational number with numerator [tex]\(18 + 6\)[/tex] and denominator [tex]\(4 - 17\)[/tex]:
[tex]\[ \frac{18 + 6}{4 - 17} = \frac{24}{-13} = -1.8461538461538463 \][/tex]
The numerator simplifies to [tex]\(24\)[/tex] and the denominator simplifies to [tex]\(-13\)[/tex].
### Part 7: Determine Whether the Given Numbers are Rational
A number is rational if it can be expressed as a fraction [tex]\(\frac{a}{b}\)[/tex] where [tex]\(a\)[/tex] and [tex]\(b\)[/tex] are integers and [tex]\(b \neq 0\)[/tex].
(d) [tex]\((-6)^2\)[/tex]:
[tex]\[ (-6)^2 = 36 \][/tex]
This is a perfect square and can be written as the fraction [tex]\(\frac{36}{1}\)[/tex]. Hence, [tex]\(36\)[/tex] is a rational number.
(e) [tex]\((-15) \div 3\)[/tex]:
[tex]\[ \frac{-15}{3} = -5.0 \][/tex]
This division results in [tex]\(-5.0\)[/tex], which can be expressed as [tex]\(\frac{-5}{1}\)[/tex]. Hence, [tex]\(-5.0\)[/tex] is a rational number.
### Summary
1. The rational numbers for part 6 are:
- [tex]\( \frac{-3}{4} = -0.75 \)[/tex]
- [tex]\( \frac{-16}{-32} = 0.5 \)[/tex]
- [tex]\( \frac{24}{-13} = -1.8461538461538463 \)[/tex]
2. Both numbers in part 7 are rational:
- [tex]\( (-6)^2 = 36 \)[/tex]
- [tex]\( (-15) \div 3 = -5.0 \)[/tex]
By expressing these results as fractions where applicable, we confirm their rationality.
### Part 6: Write Rational Numbers
A rational number is defined as a number that can be expressed as the quotient or fraction [tex]\(\frac{a}{b}\)[/tex] of two integers, where [tex]\(a\)[/tex] (the numerator) and [tex]\(b\)[/tex] (the denominator), and [tex]\(b \neq 0\)[/tex].
(a) Rational number with numerator [tex]\(-3\)[/tex] and denominator [tex]\(4\)[/tex]:
[tex]\[ \frac{-3}{4} = -0.75 \][/tex]
(b) Rational number with numerator [tex]\(-16\)[/tex] and denominator [tex]\(-32\)[/tex]:
[tex]\[ \frac{-16}{-32} = \frac{16}{32} = 0.5 \][/tex]
Since the negative signs cancel each other out, this simplifies to [tex]\(\frac{1}{2}\)[/tex], which is [tex]\(0.5\)[/tex].
(c) Rational number with numerator [tex]\(18 + 6\)[/tex] and denominator [tex]\(4 - 17\)[/tex]:
[tex]\[ \frac{18 + 6}{4 - 17} = \frac{24}{-13} = -1.8461538461538463 \][/tex]
The numerator simplifies to [tex]\(24\)[/tex] and the denominator simplifies to [tex]\(-13\)[/tex].
### Part 7: Determine Whether the Given Numbers are Rational
A number is rational if it can be expressed as a fraction [tex]\(\frac{a}{b}\)[/tex] where [tex]\(a\)[/tex] and [tex]\(b\)[/tex] are integers and [tex]\(b \neq 0\)[/tex].
(d) [tex]\((-6)^2\)[/tex]:
[tex]\[ (-6)^2 = 36 \][/tex]
This is a perfect square and can be written as the fraction [tex]\(\frac{36}{1}\)[/tex]. Hence, [tex]\(36\)[/tex] is a rational number.
(e) [tex]\((-15) \div 3\)[/tex]:
[tex]\[ \frac{-15}{3} = -5.0 \][/tex]
This division results in [tex]\(-5.0\)[/tex], which can be expressed as [tex]\(\frac{-5}{1}\)[/tex]. Hence, [tex]\(-5.0\)[/tex] is a rational number.
### Summary
1. The rational numbers for part 6 are:
- [tex]\( \frac{-3}{4} = -0.75 \)[/tex]
- [tex]\( \frac{-16}{-32} = 0.5 \)[/tex]
- [tex]\( \frac{24}{-13} = -1.8461538461538463 \)[/tex]
2. Both numbers in part 7 are rational:
- [tex]\( (-6)^2 = 36 \)[/tex]
- [tex]\( (-15) \div 3 = -5.0 \)[/tex]
By expressing these results as fractions where applicable, we confirm their rationality.
Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. Westonci.ca is here to provide the answers you seek. Return often for more expert solutions.