Westonci.ca is your trusted source for finding answers to all your questions. Ask, explore, and learn with our expert community. Experience the ease of finding accurate answers to your questions from a knowledgeable community of professionals. Join our platform to connect with experts ready to provide precise answers to your questions in different areas.
Sagot :
To solve the expression [tex]\(\frac{6}{21} - \frac{5}{7}\)[/tex], follow these steps:
1. Identify a Common Denominator:
First, find a common denominator for the fractions. The denominators are 21 and 7. The least common multiple (LCM) of 21 and 7 is 21. So, our common denominator will be 21.
2. Rewrite the Fractions with the Common Denominator:
Convert each fraction to an equivalent fraction with the denominator 21.
[tex]\(\frac{6}{21}\)[/tex] already has the denominator 21, so it remains:
[tex]\[\frac{6}{21}\][/tex]
For the second fraction, [tex]\(\frac{5}{7}\)[/tex]:
- We need to convert it to a fraction with the denominator 21. Multiply both the numerator and denominator by 3 (since [tex]\(21 \div 7 = 3\)[/tex]):
[tex]\[ \frac{5 \times 3}{7 \times 3} = \frac{15}{21} \][/tex]
3. Subtract the Fractions:
Now, subtract the second fraction from the first, ensuring both fractions have the same denominator:
[tex]\[ \frac{6}{21} - \frac{15}{21} \][/tex]
Subtract the numerators by keeping the common denominator:
[tex]\[ \frac{6 - 15}{21} = \frac{-9}{21} \][/tex]
4. Simplify the Resulting Fraction:
Simplify [tex]\(\frac{-9}{21}\)[/tex] by finding the greatest common divisor (GCD) of 9 and 21, which is 3. Divide both the numerator and the denominator by 3:
[tex]\[ \frac{-9 \div 3}{21 \div 3} = \frac{-3}{7} \][/tex]
So after performing the operations step-by-step, the result is:
[tex]\[ \frac{6}{21} - \frac{5}{7} = -\frac{3}{7} \][/tex]
To express this as a decimal:
[tex]\[ -\frac{3}{7} \approx -0.42857142857142855 \][/tex]
Thus, the simplified fraction is [tex]\(-\frac{3}{7}\)[/tex], which is approximately [tex]\(-0.42857142857142855\)[/tex] when written as a decimal.
1. Identify a Common Denominator:
First, find a common denominator for the fractions. The denominators are 21 and 7. The least common multiple (LCM) of 21 and 7 is 21. So, our common denominator will be 21.
2. Rewrite the Fractions with the Common Denominator:
Convert each fraction to an equivalent fraction with the denominator 21.
[tex]\(\frac{6}{21}\)[/tex] already has the denominator 21, so it remains:
[tex]\[\frac{6}{21}\][/tex]
For the second fraction, [tex]\(\frac{5}{7}\)[/tex]:
- We need to convert it to a fraction with the denominator 21. Multiply both the numerator and denominator by 3 (since [tex]\(21 \div 7 = 3\)[/tex]):
[tex]\[ \frac{5 \times 3}{7 \times 3} = \frac{15}{21} \][/tex]
3. Subtract the Fractions:
Now, subtract the second fraction from the first, ensuring both fractions have the same denominator:
[tex]\[ \frac{6}{21} - \frac{15}{21} \][/tex]
Subtract the numerators by keeping the common denominator:
[tex]\[ \frac{6 - 15}{21} = \frac{-9}{21} \][/tex]
4. Simplify the Resulting Fraction:
Simplify [tex]\(\frac{-9}{21}\)[/tex] by finding the greatest common divisor (GCD) of 9 and 21, which is 3. Divide both the numerator and the denominator by 3:
[tex]\[ \frac{-9 \div 3}{21 \div 3} = \frac{-3}{7} \][/tex]
So after performing the operations step-by-step, the result is:
[tex]\[ \frac{6}{21} - \frac{5}{7} = -\frac{3}{7} \][/tex]
To express this as a decimal:
[tex]\[ -\frac{3}{7} \approx -0.42857142857142855 \][/tex]
Thus, the simplified fraction is [tex]\(-\frac{3}{7}\)[/tex], which is approximately [tex]\(-0.42857142857142855\)[/tex] when written as a decimal.
Thanks for stopping by. We are committed to providing the best answers for all your questions. See you again soon. Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. Get the answers you need at Westonci.ca. Stay informed by returning for our latest expert advice.