Westonci.ca is the best place to get answers to your questions, provided by a community of experienced and knowledgeable experts. Get immediate answers to your questions from a wide network of experienced professionals on our Q&A platform. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals.
Sagot :
Let's solve the given system of linear equations using Cramer's Rule. The system is:
[tex]\[ \begin{cases} 2x + 5y = -13 \\ -3x - 2y = 3 \end{cases} \][/tex]
To apply Cramer's Rule, we first need to find the determinant of the coefficient matrix [tex]\(A\)[/tex]:
[tex]\[ A = \begin{pmatrix} 2 & 5 \\ -3 & -2 \end{pmatrix} \][/tex]
The determinant [tex]\(\det(A)\)[/tex] is given by:
[tex]\[ \det(A) = (2 \times -2) - (5 \times -3) \][/tex]
Calculating the terms within the determinant:
[tex]\[ \det(A) = -4 + 15 = 11 \][/tex]
Next, we need to find the determinant of matrix [tex]\(A_y\)[/tex], which is obtained by replacing the [tex]\(y\)[/tex]-coefficients in the original matrix with the constants from the right-hand side of the equations:
[tex]\[ A_y = \begin{pmatrix} 2 & -13 \\ -3 & 3 \end{pmatrix} \][/tex]
We calculate the determinant [tex]\(\det(A_y)\)[/tex]:
[tex]\[ \det(A_y) = (2 \times 3) - (-13 \times -3) \][/tex]
Calculating the terms within the determinant:
[tex]\[ \det(A_y) = 6 - 39 = -33 \][/tex]
Using Cramer's Rule, the value of [tex]\(y\)[/tex] is given by:
[tex]\[ y = \frac{\det(A_y)}{\det(A)} \][/tex]
Substituting the values of the determinants:
[tex]\[ y = \frac{-33}{11} = -3 \][/tex]
Therefore, the value of [tex]\(y\)[/tex] in the solution to the system of linear equations is [tex]\(-3\)[/tex]. The correct answer is:
[tex]\[ \boxed{-3} \][/tex]
[tex]\[ \begin{cases} 2x + 5y = -13 \\ -3x - 2y = 3 \end{cases} \][/tex]
To apply Cramer's Rule, we first need to find the determinant of the coefficient matrix [tex]\(A\)[/tex]:
[tex]\[ A = \begin{pmatrix} 2 & 5 \\ -3 & -2 \end{pmatrix} \][/tex]
The determinant [tex]\(\det(A)\)[/tex] is given by:
[tex]\[ \det(A) = (2 \times -2) - (5 \times -3) \][/tex]
Calculating the terms within the determinant:
[tex]\[ \det(A) = -4 + 15 = 11 \][/tex]
Next, we need to find the determinant of matrix [tex]\(A_y\)[/tex], which is obtained by replacing the [tex]\(y\)[/tex]-coefficients in the original matrix with the constants from the right-hand side of the equations:
[tex]\[ A_y = \begin{pmatrix} 2 & -13 \\ -3 & 3 \end{pmatrix} \][/tex]
We calculate the determinant [tex]\(\det(A_y)\)[/tex]:
[tex]\[ \det(A_y) = (2 \times 3) - (-13 \times -3) \][/tex]
Calculating the terms within the determinant:
[tex]\[ \det(A_y) = 6 - 39 = -33 \][/tex]
Using Cramer's Rule, the value of [tex]\(y\)[/tex] is given by:
[tex]\[ y = \frac{\det(A_y)}{\det(A)} \][/tex]
Substituting the values of the determinants:
[tex]\[ y = \frac{-33}{11} = -3 \][/tex]
Therefore, the value of [tex]\(y\)[/tex] in the solution to the system of linear equations is [tex]\(-3\)[/tex]. The correct answer is:
[tex]\[ \boxed{-3} \][/tex]
Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. Get the answers you need at Westonci.ca. Stay informed by returning for our latest expert advice.