Westonci.ca offers fast, accurate answers to your questions. Join our community and get the insights you need now. Get quick and reliable solutions to your questions from knowledgeable professionals on our comprehensive Q&A platform. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.
Sagot :
To solve this problem, we need to find the least number such that when 5 is added to it, the resulting sum is divisible by 32, 64, and 192. Here's a step-by-step solution:
1. Determine the Least Common Multiple (LCM):
To ensure that the resulting sum is divisible by 32, 64, and 192, we first need to find the Least Common Multiple (LCM) of these three numbers:
- The LCM of 32 and 64: Since 64 is a multiple of 32, the LCM is 64.
- The LCM of 64 and 192: Since 192 is a multiple of 64, the LCM is 192.
Therefore, the LCM of 32, 64, and 192 is 192.
2. Form the Equation:
Let [tex]\( x \)[/tex] be the least number we are looking for. According to the problem, when 5 is added to [tex]\( x \)[/tex], the sum must be divisible by 192. This can be mathematically represented as:
[tex]\[ x + 5 = 192k \][/tex]
for some integer [tex]\( k \)[/tex].
3. Isolate [tex]\( x \)[/tex]:
To find [tex]\( x \)[/tex], rearrange the equation:
[tex]\[ x = 192k - 5 \][/tex]
4. Find the Least Value of [tex]\( x \)[/tex]:
Since we want the least number [tex]\( x \)[/tex], we need to find the smallest value of [tex]\( k \)[/tex] such that [tex]\( x \)[/tex] is non-negative and as small as possible. The smallest integer [tex]\( k \)[/tex] is 1:
[tex]\[ x = 192 \times 1 - 5 \][/tex]
[tex]\[ x = 192 - 5 \][/tex]
[tex]\[ x = 187 \][/tex]
Hence, the least number with which when 5 is added to it the resulting sum is exactly divisible by 32, 64, and 192 is:
[tex]\[ \boxed{187} \][/tex]
1. Determine the Least Common Multiple (LCM):
To ensure that the resulting sum is divisible by 32, 64, and 192, we first need to find the Least Common Multiple (LCM) of these three numbers:
- The LCM of 32 and 64: Since 64 is a multiple of 32, the LCM is 64.
- The LCM of 64 and 192: Since 192 is a multiple of 64, the LCM is 192.
Therefore, the LCM of 32, 64, and 192 is 192.
2. Form the Equation:
Let [tex]\( x \)[/tex] be the least number we are looking for. According to the problem, when 5 is added to [tex]\( x \)[/tex], the sum must be divisible by 192. This can be mathematically represented as:
[tex]\[ x + 5 = 192k \][/tex]
for some integer [tex]\( k \)[/tex].
3. Isolate [tex]\( x \)[/tex]:
To find [tex]\( x \)[/tex], rearrange the equation:
[tex]\[ x = 192k - 5 \][/tex]
4. Find the Least Value of [tex]\( x \)[/tex]:
Since we want the least number [tex]\( x \)[/tex], we need to find the smallest value of [tex]\( k \)[/tex] such that [tex]\( x \)[/tex] is non-negative and as small as possible. The smallest integer [tex]\( k \)[/tex] is 1:
[tex]\[ x = 192 \times 1 - 5 \][/tex]
[tex]\[ x = 192 - 5 \][/tex]
[tex]\[ x = 187 \][/tex]
Hence, the least number with which when 5 is added to it the resulting sum is exactly divisible by 32, 64, and 192 is:
[tex]\[ \boxed{187} \][/tex]
We appreciate your time. Please revisit us for more reliable answers to any questions you may have. Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Get the answers you need at Westonci.ca. Stay informed by returning for our latest expert advice.