At Westonci.ca, we make it easy for you to get the answers you need from a community of knowledgeable individuals. Experience the convenience of getting reliable answers to your questions from a vast network of knowledgeable experts. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals.
Sagot :
To determine the correct way to state the transformation given by [tex]\((x, y) \rightarrow (y, -x)\)[/tex], we need to analyze the nature of the transformation.
1. The original coordinates [tex]\((x, y)\)[/tex] of a point are transformed to new coordinates [tex]\((y, -x)\)[/tex]. This type of transformation is a rotation because both coordinates change in a manner consistent with rotating around the origin.
2. Let's consider the specific effects of the transformation:
- The original x-coordinate becomes the new y-coordinate.
- The original y-coordinate changes sign and becomes the new x-coordinate, but with a negative sign.
3. To identify which rotation this corresponds to, visualize the point [tex]\((x, y)\)[/tex] on the coordinate plane:
- When we rotate a point 90 degrees counterclockwise around the origin, the new position of [tex]\((x, y)\)[/tex] would be precisely [tex]\((y, -x)\)[/tex].
4. This matches our transformation rule exactly. Therefore, the transformation [tex]\((x, y) \rightarrow (y, -x)\)[/tex] is indeed a rotation by 90 degrees counterclockwise around the origin.
Therefore, the correct way to state the transformation is [tex]\(R_{0,90^{\circ}}\)[/tex].
1. The original coordinates [tex]\((x, y)\)[/tex] of a point are transformed to new coordinates [tex]\((y, -x)\)[/tex]. This type of transformation is a rotation because both coordinates change in a manner consistent with rotating around the origin.
2. Let's consider the specific effects of the transformation:
- The original x-coordinate becomes the new y-coordinate.
- The original y-coordinate changes sign and becomes the new x-coordinate, but with a negative sign.
3. To identify which rotation this corresponds to, visualize the point [tex]\((x, y)\)[/tex] on the coordinate plane:
- When we rotate a point 90 degrees counterclockwise around the origin, the new position of [tex]\((x, y)\)[/tex] would be precisely [tex]\((y, -x)\)[/tex].
4. This matches our transformation rule exactly. Therefore, the transformation [tex]\((x, y) \rightarrow (y, -x)\)[/tex] is indeed a rotation by 90 degrees counterclockwise around the origin.
Therefore, the correct way to state the transformation is [tex]\(R_{0,90^{\circ}}\)[/tex].
We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. We're dedicated to helping you find the answers you need at Westonci.ca. Don't hesitate to return for more.