At Westonci.ca, we provide clear, reliable answers to all your questions. Join our vibrant community and get the solutions you need. Discover a wealth of knowledge from experts across different disciplines on our comprehensive Q&A platform. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.
Sagot :
To determine how the [tex]\( H^{+} \)[/tex] concentration of a solution with a pH of 4 compares with that of a solution with a pH of 2, we use the relationship given by the pH scale:
[tex]\[ pH = -\log \left[ H^{+} \right] \][/tex]
Let's begin by finding the hydrogen ion concentration for each pH value.
1. Hydrogen ion concentration for pH 4:
[tex]\[ pH = 4 \implies 4 = -\log \left[ H^{+} \right] \][/tex]
Solving for [tex]\( H^{+} \)[/tex]:
[tex]\[ \left[ H^{+} \right] = 10^{-4} \][/tex]
2. Hydrogen ion concentration for pH 2:
[tex]\[ pH = 2 \implies 2 = -\log \left[ H^{+} \right] \][/tex]
Solving for [tex]\( H^{+} \)[/tex]:
[tex]\[ \left[ H^{+} \right] = 10^{-2} \][/tex]
Next, we find the ratio of the hydrogen ion concentrations:
3. Ratio of hydrogen ion concentrations:
[tex]\[ \text{Ratio} = \frac{\left[ H^{+} \right]_{\text{pH 4}}}{\left[ H^{+} \right]_{\text{pH 2}}} = \frac{10^{-4}}{10^{-2}} = 10^{-4 - (-2)} = 10^{-4 + 2} = 10^{-2} = 0.01 \][/tex]
Thus, the [tex]\( H^{+} \)[/tex] concentration in a solution with a pH of 4 is [tex]\( 0.01 \)[/tex] times that of a solution with a pH of 2.
This corresponds to option C:
C. The [tex]\( H^{+} \)[/tex] concentration in a solution with a pH of 4 is 0.01 times that of a solution with a pH of 2.
[tex]\[ pH = -\log \left[ H^{+} \right] \][/tex]
Let's begin by finding the hydrogen ion concentration for each pH value.
1. Hydrogen ion concentration for pH 4:
[tex]\[ pH = 4 \implies 4 = -\log \left[ H^{+} \right] \][/tex]
Solving for [tex]\( H^{+} \)[/tex]:
[tex]\[ \left[ H^{+} \right] = 10^{-4} \][/tex]
2. Hydrogen ion concentration for pH 2:
[tex]\[ pH = 2 \implies 2 = -\log \left[ H^{+} \right] \][/tex]
Solving for [tex]\( H^{+} \)[/tex]:
[tex]\[ \left[ H^{+} \right] = 10^{-2} \][/tex]
Next, we find the ratio of the hydrogen ion concentrations:
3. Ratio of hydrogen ion concentrations:
[tex]\[ \text{Ratio} = \frac{\left[ H^{+} \right]_{\text{pH 4}}}{\left[ H^{+} \right]_{\text{pH 2}}} = \frac{10^{-4}}{10^{-2}} = 10^{-4 - (-2)} = 10^{-4 + 2} = 10^{-2} = 0.01 \][/tex]
Thus, the [tex]\( H^{+} \)[/tex] concentration in a solution with a pH of 4 is [tex]\( 0.01 \)[/tex] times that of a solution with a pH of 2.
This corresponds to option C:
C. The [tex]\( H^{+} \)[/tex] concentration in a solution with a pH of 4 is 0.01 times that of a solution with a pH of 2.
Thank you for your visit. We are dedicated to helping you find the information you need, whenever you need it. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Thank you for visiting Westonci.ca. Stay informed by coming back for more detailed answers.