Westonci.ca is the trusted Q&A platform where you can get reliable answers from a community of knowledgeable contributors. Get detailed and accurate answers to your questions from a community of experts on our comprehensive Q&A platform. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform.
Sagot :
Let's analyze the given statements one at a time and compare them against the results we derived from the functions and their derivatives.
### Statement a: [tex]\(F(x)=x^3-4x+100\)[/tex] and [tex]\(G(x)=x^3-4x-100\)[/tex] are antiderivatives of the same function.
#### Options for Statement a:
1. Option A. The statement is true. For the given [tex]\(F(x)\)[/tex] and [tex]\(G(x)\)[/tex], [tex]\(F^{\prime}(x)=G^{\prime}(x)=3x^2-4\)[/tex].
2. Option B. The statement is true. For the given [tex]\(F(x)\)[/tex] and [tex]\(G(x)\)[/tex], [tex]\(F^{\prime}(x)=G^{\prime}(x)=3x-4\)[/tex].
3. Option C. The statement is false. For the given [tex]\(F(x)\)[/tex] and [tex]\(G(x)\)[/tex], [tex]\(F^{\prime}(x)=\frac{x^4}{4}-2 x^2+100 x\)[/tex] and [tex]\(G^{\prime}(x)=\frac{x^4}{4}-2 x^2-100 x\)[/tex].
4. Option D. The statement is false. For the given [tex]\(F(x)\)[/tex] and [tex]\(G(x)\)[/tex], [tex]\(F^{\prime}(x)=G^{\prime}(x)=3 x^2-4\)[/tex].
Explanation:
When we differentiate both functions:
[tex]\[ F(x) = x^3 - 4x + 100 \][/tex]
[tex]\[ G(x) = x^3 - 4x - 100 \][/tex]
Taking their derivatives:
[tex]\[ F^{\prime}(x) = 3x^2 - 4 \][/tex]
[tex]\[ G^{\prime}(x) = 3x^2 - 4 \][/tex]
Since [tex]\(F^{\prime}(x)\)[/tex] and [tex]\(G^{\prime}(x)\)[/tex] are equal to [tex]\(3x^2 - 4\)[/tex], the correct option must recognize this equality properly.
Correct Option:
- Option A is true and accurately states that [tex]\(F^{\prime}(x) = G^{\prime}(x) = 3x^2 - 4\)[/tex].
### Statement b: If [tex]\(F^{\prime}(x) = f(x)\)[/tex], then [tex]\(f\)[/tex] is the antiderivative of [tex]\(F\)[/tex].
#### Options for Statement b:
1. Option A. The statement is false because the antiderivative of [tex]\(F\)[/tex] may vary depending on the constant of integration.
2. Option B. The statement is true because a function [tex]\(f\)[/tex] is an antiderivative of [tex]\(f\)[/tex] on an interval [tex]\(I\)[/tex] provided [tex]\(F^{\prime}(x) = f(x)\)[/tex], for all [tex]\(x\)[/tex] in [tex]\(I\)[/tex].
3. Option C. The statement is true. Let [tex]\(F^{\prime}(x) = f(x) = x^2\)[/tex]. Since [tex]\(\int x^2 \, dx = 2x\)[/tex] for all [tex]\(x\)[/tex], [tex]\(f\)[/tex] is the antiderivative of [tex]\(F\)[/tex].
4. Option D. The statement is false, because a function [tex]\(F\)[/tex] is an antiderivative of [tex]\(f\)[/tex] on an interval [tex]\(I\)[/tex] provided [tex]\(F^{\prime}(x) = f(x)\)[/tex], for all [tex]\(x\)[/tex] in [tex]\(I\)[/tex].
Explanation:
For [tex]\(F^{\prime}(x) = f(x)\)[/tex], [tex]\(f(x)\)[/tex] is the derivative of [tex]\(F(x)\)[/tex]. This implies that [tex]\(f\)[/tex] is the function such that integrating it over [tex]\(x\)[/tex] gives the function [tex]\(F(x)\)[/tex] plus a constant. Thus [tex]\(f\)[/tex] is indeed the derivative (or the antiderivative) that represents the rate of change of [tex]\(F(x)\)[/tex].
Correct Option:
- Option B is accurate and states the role of [tex]\(f(x)\)[/tex] as the antiderivative required for [tex]\(F(x)\)[/tex].
### Conclusion:
- Statement a: Option A is the correct answer.
- Statement b: Option B is the correct answer.
These conclusions match the derived results and fulfill the conditions given in the question.
### Statement a: [tex]\(F(x)=x^3-4x+100\)[/tex] and [tex]\(G(x)=x^3-4x-100\)[/tex] are antiderivatives of the same function.
#### Options for Statement a:
1. Option A. The statement is true. For the given [tex]\(F(x)\)[/tex] and [tex]\(G(x)\)[/tex], [tex]\(F^{\prime}(x)=G^{\prime}(x)=3x^2-4\)[/tex].
2. Option B. The statement is true. For the given [tex]\(F(x)\)[/tex] and [tex]\(G(x)\)[/tex], [tex]\(F^{\prime}(x)=G^{\prime}(x)=3x-4\)[/tex].
3. Option C. The statement is false. For the given [tex]\(F(x)\)[/tex] and [tex]\(G(x)\)[/tex], [tex]\(F^{\prime}(x)=\frac{x^4}{4}-2 x^2+100 x\)[/tex] and [tex]\(G^{\prime}(x)=\frac{x^4}{4}-2 x^2-100 x\)[/tex].
4. Option D. The statement is false. For the given [tex]\(F(x)\)[/tex] and [tex]\(G(x)\)[/tex], [tex]\(F^{\prime}(x)=G^{\prime}(x)=3 x^2-4\)[/tex].
Explanation:
When we differentiate both functions:
[tex]\[ F(x) = x^3 - 4x + 100 \][/tex]
[tex]\[ G(x) = x^3 - 4x - 100 \][/tex]
Taking their derivatives:
[tex]\[ F^{\prime}(x) = 3x^2 - 4 \][/tex]
[tex]\[ G^{\prime}(x) = 3x^2 - 4 \][/tex]
Since [tex]\(F^{\prime}(x)\)[/tex] and [tex]\(G^{\prime}(x)\)[/tex] are equal to [tex]\(3x^2 - 4\)[/tex], the correct option must recognize this equality properly.
Correct Option:
- Option A is true and accurately states that [tex]\(F^{\prime}(x) = G^{\prime}(x) = 3x^2 - 4\)[/tex].
### Statement b: If [tex]\(F^{\prime}(x) = f(x)\)[/tex], then [tex]\(f\)[/tex] is the antiderivative of [tex]\(F\)[/tex].
#### Options for Statement b:
1. Option A. The statement is false because the antiderivative of [tex]\(F\)[/tex] may vary depending on the constant of integration.
2. Option B. The statement is true because a function [tex]\(f\)[/tex] is an antiderivative of [tex]\(f\)[/tex] on an interval [tex]\(I\)[/tex] provided [tex]\(F^{\prime}(x) = f(x)\)[/tex], for all [tex]\(x\)[/tex] in [tex]\(I\)[/tex].
3. Option C. The statement is true. Let [tex]\(F^{\prime}(x) = f(x) = x^2\)[/tex]. Since [tex]\(\int x^2 \, dx = 2x\)[/tex] for all [tex]\(x\)[/tex], [tex]\(f\)[/tex] is the antiderivative of [tex]\(F\)[/tex].
4. Option D. The statement is false, because a function [tex]\(F\)[/tex] is an antiderivative of [tex]\(f\)[/tex] on an interval [tex]\(I\)[/tex] provided [tex]\(F^{\prime}(x) = f(x)\)[/tex], for all [tex]\(x\)[/tex] in [tex]\(I\)[/tex].
Explanation:
For [tex]\(F^{\prime}(x) = f(x)\)[/tex], [tex]\(f(x)\)[/tex] is the derivative of [tex]\(F(x)\)[/tex]. This implies that [tex]\(f\)[/tex] is the function such that integrating it over [tex]\(x\)[/tex] gives the function [tex]\(F(x)\)[/tex] plus a constant. Thus [tex]\(f\)[/tex] is indeed the derivative (or the antiderivative) that represents the rate of change of [tex]\(F(x)\)[/tex].
Correct Option:
- Option B is accurate and states the role of [tex]\(f(x)\)[/tex] as the antiderivative required for [tex]\(F(x)\)[/tex].
### Conclusion:
- Statement a: Option A is the correct answer.
- Statement b: Option B is the correct answer.
These conclusions match the derived results and fulfill the conditions given in the question.
We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Thank you for visiting Westonci.ca. Stay informed by coming back for more detailed answers.