Explore Westonci.ca, the premier Q&A site that helps you find precise answers to your questions, no matter the topic. Discover reliable solutions to your questions from a wide network of experts on our comprehensive Q&A platform. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.
Sagot :
To determine the best prediction for the number of bacterial cells at 16 hours, we'll fit an exponential growth model to the given data and use this model for the prediction.
Firstly, we recognize that an exponential model generally has the form:
[tex]\[ P(t) = a \cdot e^{bt} \][/tex]
where:
- [tex]\( P(t) \)[/tex] is the population at time [tex]\( t \)[/tex],
- [tex]\( a \)[/tex] is the initial amount (when [tex]\( t = 0 \)[/tex]),
- [tex]\( b \)[/tex] is the growth rate.
Given the table, we have the following data points:
[tex]\[ \begin{array}{c|c} \text{Time }(t) & \text{Cell Population }(P(t)) \\ \hline 0 & 125 \\ 2 & 162 \\ 4 & 258 \\ 6 & 374 \\ 8 & 518 \\ 10 & 763 \\ \end{array} \][/tex]
We fit the exponential model [tex]\( P(t) = a \cdot e^{bt} \)[/tex] to this data. Through the process of fitting the data, we determine the parameters [tex]\( a \)[/tex] and [tex]\( b \)[/tex]:
From the fitting process, the parameters are found to be:
[tex]\[ a \approx 120.94548094516612 \][/tex]
[tex]\[ b \approx 0.18392823656534055 \][/tex]
Now, we use this model to predict the number of cells at 16 hours.
[tex]\[ P(16) = a \cdot e^{b \cdot 16} \][/tex]
Substituting the values of [tex]\( a \)[/tex] and [tex]\( b \)[/tex]:
[tex]\[ P(16) \approx 120.94548094516612 \cdot e^{0.18392823656534055 \cdot 16} \][/tex]
Calculating the exponent:
[tex]\[ 0.18392823656534055 \cdot 16 \approx 2.9428517845 \][/tex]
So,
[tex]\[ P(16) \approx 120.94548094516612 \cdot e^{2.9428517845} \][/tex]
[tex]\[ P(16) \approx 120.94548094516612 \cdot 18.9738767328 \][/tex]
[tex]\[ P(16) \approx 2294.3197157559675 \][/tex]
Hence, the best prediction for the number of cells in the colony at 16 hours is approximately:
[tex]\[ \boxed{2294} \][/tex]
So the correct answer is closest to:
D. 2,700
Firstly, we recognize that an exponential model generally has the form:
[tex]\[ P(t) = a \cdot e^{bt} \][/tex]
where:
- [tex]\( P(t) \)[/tex] is the population at time [tex]\( t \)[/tex],
- [tex]\( a \)[/tex] is the initial amount (when [tex]\( t = 0 \)[/tex]),
- [tex]\( b \)[/tex] is the growth rate.
Given the table, we have the following data points:
[tex]\[ \begin{array}{c|c} \text{Time }(t) & \text{Cell Population }(P(t)) \\ \hline 0 & 125 \\ 2 & 162 \\ 4 & 258 \\ 6 & 374 \\ 8 & 518 \\ 10 & 763 \\ \end{array} \][/tex]
We fit the exponential model [tex]\( P(t) = a \cdot e^{bt} \)[/tex] to this data. Through the process of fitting the data, we determine the parameters [tex]\( a \)[/tex] and [tex]\( b \)[/tex]:
From the fitting process, the parameters are found to be:
[tex]\[ a \approx 120.94548094516612 \][/tex]
[tex]\[ b \approx 0.18392823656534055 \][/tex]
Now, we use this model to predict the number of cells at 16 hours.
[tex]\[ P(16) = a \cdot e^{b \cdot 16} \][/tex]
Substituting the values of [tex]\( a \)[/tex] and [tex]\( b \)[/tex]:
[tex]\[ P(16) \approx 120.94548094516612 \cdot e^{0.18392823656534055 \cdot 16} \][/tex]
Calculating the exponent:
[tex]\[ 0.18392823656534055 \cdot 16 \approx 2.9428517845 \][/tex]
So,
[tex]\[ P(16) \approx 120.94548094516612 \cdot e^{2.9428517845} \][/tex]
[tex]\[ P(16) \approx 120.94548094516612 \cdot 18.9738767328 \][/tex]
[tex]\[ P(16) \approx 2294.3197157559675 \][/tex]
Hence, the best prediction for the number of cells in the colony at 16 hours is approximately:
[tex]\[ \boxed{2294} \][/tex]
So the correct answer is closest to:
D. 2,700
We appreciate your visit. Hopefully, the answers you found were beneficial. Don't hesitate to come back for more information. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Westonci.ca is committed to providing accurate answers. Come back soon for more trustworthy information.