Welcome to Westonci.ca, where your questions are met with accurate answers from a community of experts and enthusiasts. Discover solutions to your questions from experienced professionals across multiple fields on our comprehensive Q&A platform. Join our platform to connect with experts ready to provide precise answers to your questions in different areas.
Sagot :
To determine which of the given equations is a perfect square trinomial of the form [tex]\(x^2 + mx + m\)[/tex], we need to match it to the standard form of a perfect square trinomial, which is [tex]\((x + a)^2 = x^2 + 2ax + a^2\)[/tex].
### Step-by-Step Solution:
1. Compare each option to the form [tex]\((x + a)^2\)[/tex]:
- For [tex]\((x - 1)^2\)[/tex]:
[tex]\[ (x - 1)^2 = x^2 - 2x + 1 \][/tex]
Here, [tex]\(x^2 - 2x + 1\)[/tex]. It does not fit the form [tex]\(x^2 + mx + m\)[/tex].
- For [tex]\((x + 1)^2\)[/tex]:
[tex]\[ (x + 1)^2 = x^2 + 2x + 1 \][/tex]
Here, [tex]\(x^2 + 2x + 1\)[/tex]. It partially fits but does not carry the same coefficient for the middle term and last term.
- For [tex]\((x + 2)^2\)[/tex]:
[tex]\[ (x + 2)^2 = x^2 + 4x + 4 \][/tex]
Here, [tex]\(x^2 + 4x + 4\)[/tex]. It fits the form [tex]\(x^2 + mx + m\)[/tex] perfectly where [tex]\(m = 4\)[/tex].
- For [tex]\((x + 4)^2\)[/tex]:
[tex]\[ (x + 4)^2 = x^2 + 8x + 16 \][/tex]
Here, [tex]\(x^2 + 8x + 16\)[/tex]. It does not fit the form [tex]\(x^2 + mx + m\)[/tex].
2. Find the matching equation:
Among the given options, only [tex]\((x + 2)^2 = x^2 + 4x + 4\)[/tex] fits the needed form of [tex]\(x^2 + mx + m\)[/tex].
Thus, the correct equation must be [tex]\((x + 2)^2\)[/tex], which means:
[tex]\[ x^2 + mx + m = (x + 2)^2 \][/tex]
So, the correct option is:
[tex]\[ \boxed{3} \][/tex]
### Step-by-Step Solution:
1. Compare each option to the form [tex]\((x + a)^2\)[/tex]:
- For [tex]\((x - 1)^2\)[/tex]:
[tex]\[ (x - 1)^2 = x^2 - 2x + 1 \][/tex]
Here, [tex]\(x^2 - 2x + 1\)[/tex]. It does not fit the form [tex]\(x^2 + mx + m\)[/tex].
- For [tex]\((x + 1)^2\)[/tex]:
[tex]\[ (x + 1)^2 = x^2 + 2x + 1 \][/tex]
Here, [tex]\(x^2 + 2x + 1\)[/tex]. It partially fits but does not carry the same coefficient for the middle term and last term.
- For [tex]\((x + 2)^2\)[/tex]:
[tex]\[ (x + 2)^2 = x^2 + 4x + 4 \][/tex]
Here, [tex]\(x^2 + 4x + 4\)[/tex]. It fits the form [tex]\(x^2 + mx + m\)[/tex] perfectly where [tex]\(m = 4\)[/tex].
- For [tex]\((x + 4)^2\)[/tex]:
[tex]\[ (x + 4)^2 = x^2 + 8x + 16 \][/tex]
Here, [tex]\(x^2 + 8x + 16\)[/tex]. It does not fit the form [tex]\(x^2 + mx + m\)[/tex].
2. Find the matching equation:
Among the given options, only [tex]\((x + 2)^2 = x^2 + 4x + 4\)[/tex] fits the needed form of [tex]\(x^2 + mx + m\)[/tex].
Thus, the correct equation must be [tex]\((x + 2)^2\)[/tex], which means:
[tex]\[ x^2 + mx + m = (x + 2)^2 \][/tex]
So, the correct option is:
[tex]\[ \boxed{3} \][/tex]
Thanks for using our platform. We're always here to provide accurate and up-to-date answers to all your queries. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Thank you for trusting Westonci.ca. Don't forget to revisit us for more accurate and insightful answers.