Westonci.ca is the best place to get answers to your questions, provided by a community of experienced and knowledgeable experts. Get accurate and detailed answers to your questions from a dedicated community of experts on our Q&A platform. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.
Sagot :
To factor the expression [tex]\( 4m^6 - 16p^{10} \)[/tex], we'll follow a step-by-step approach:
1. Identify Common Factors:
Notice that both terms in the expression [tex]\( 4m^6 - 16p^{10} \)[/tex] have a common factor of 4. Thus, we can factor out this common factor first:
[tex]\[ 4m^6 - 16p^{10} = 4(m^6 - 4p^{10}) \][/tex]
2. Recognize the Difference of Squares:
Next, we look inside the parentheses. Notice that [tex]\( m^6 - 4p^{10} \)[/tex] is a difference of squares. Let's rewrite [tex]\( m^6 \)[/tex] as [tex]\( (m^3)^2 \)[/tex] and [tex]\( 4p^{10} \)[/tex] as [tex]\( (2p^5)^2 \)[/tex]:
[tex]\[ m^6 - 4p^{10} = (m^3)^2 - (2p^5)^2 \][/tex]
3. Apply the Difference of Squares Formula:
The difference of squares formula states that [tex]\( a^2 - b^2 = (a - b)(a + b) \)[/tex].
Applying this to our expression:
[tex]\[ (m^3)^2 - (2p^5)^2 = (m^3 - 2p^5)(m^3 + 2p^5) \][/tex]
4. Combine Factors:
Substituting this result back into the expression we factored out in step 1:
[tex]\[ 4(m^6 - 4p^{10}) = 4((m^3)^2 - (2p^5)^2) = 4(m^3 - 2p^5)(m^3 + 2p^5) \][/tex]
Thus, the fully factored form of the original expression [tex]\( 4m^6 - 16p^{10} \)[/tex] is:
[tex]\[ 4(m^3 - 2p^5)(m^3 + 2p^5) \][/tex]
1. Identify Common Factors:
Notice that both terms in the expression [tex]\( 4m^6 - 16p^{10} \)[/tex] have a common factor of 4. Thus, we can factor out this common factor first:
[tex]\[ 4m^6 - 16p^{10} = 4(m^6 - 4p^{10}) \][/tex]
2. Recognize the Difference of Squares:
Next, we look inside the parentheses. Notice that [tex]\( m^6 - 4p^{10} \)[/tex] is a difference of squares. Let's rewrite [tex]\( m^6 \)[/tex] as [tex]\( (m^3)^2 \)[/tex] and [tex]\( 4p^{10} \)[/tex] as [tex]\( (2p^5)^2 \)[/tex]:
[tex]\[ m^6 - 4p^{10} = (m^3)^2 - (2p^5)^2 \][/tex]
3. Apply the Difference of Squares Formula:
The difference of squares formula states that [tex]\( a^2 - b^2 = (a - b)(a + b) \)[/tex].
Applying this to our expression:
[tex]\[ (m^3)^2 - (2p^5)^2 = (m^3 - 2p^5)(m^3 + 2p^5) \][/tex]
4. Combine Factors:
Substituting this result back into the expression we factored out in step 1:
[tex]\[ 4(m^6 - 4p^{10}) = 4((m^3)^2 - (2p^5)^2) = 4(m^3 - 2p^5)(m^3 + 2p^5) \][/tex]
Thus, the fully factored form of the original expression [tex]\( 4m^6 - 16p^{10} \)[/tex] is:
[tex]\[ 4(m^3 - 2p^5)(m^3 + 2p^5) \][/tex]
We appreciate your time. Please come back anytime for the latest information and answers to your questions. Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. Get the answers you need at Westonci.ca. Stay informed with our latest expert advice.