Welcome to Westonci.ca, where curiosity meets expertise. Ask any question and receive fast, accurate answers from our knowledgeable community. Discover a wealth of knowledge from experts across different disciplines on our comprehensive Q&A platform. Join our platform to connect with experts ready to provide precise answers to your questions in different areas.
Sagot :
To factor the expression [tex]\( 4m^6 - 16p^{10} \)[/tex], we'll follow a step-by-step approach:
1. Identify Common Factors:
Notice that both terms in the expression [tex]\( 4m^6 - 16p^{10} \)[/tex] have a common factor of 4. Thus, we can factor out this common factor first:
[tex]\[ 4m^6 - 16p^{10} = 4(m^6 - 4p^{10}) \][/tex]
2. Recognize the Difference of Squares:
Next, we look inside the parentheses. Notice that [tex]\( m^6 - 4p^{10} \)[/tex] is a difference of squares. Let's rewrite [tex]\( m^6 \)[/tex] as [tex]\( (m^3)^2 \)[/tex] and [tex]\( 4p^{10} \)[/tex] as [tex]\( (2p^5)^2 \)[/tex]:
[tex]\[ m^6 - 4p^{10} = (m^3)^2 - (2p^5)^2 \][/tex]
3. Apply the Difference of Squares Formula:
The difference of squares formula states that [tex]\( a^2 - b^2 = (a - b)(a + b) \)[/tex].
Applying this to our expression:
[tex]\[ (m^3)^2 - (2p^5)^2 = (m^3 - 2p^5)(m^3 + 2p^5) \][/tex]
4. Combine Factors:
Substituting this result back into the expression we factored out in step 1:
[tex]\[ 4(m^6 - 4p^{10}) = 4((m^3)^2 - (2p^5)^2) = 4(m^3 - 2p^5)(m^3 + 2p^5) \][/tex]
Thus, the fully factored form of the original expression [tex]\( 4m^6 - 16p^{10} \)[/tex] is:
[tex]\[ 4(m^3 - 2p^5)(m^3 + 2p^5) \][/tex]
1. Identify Common Factors:
Notice that both terms in the expression [tex]\( 4m^6 - 16p^{10} \)[/tex] have a common factor of 4. Thus, we can factor out this common factor first:
[tex]\[ 4m^6 - 16p^{10} = 4(m^6 - 4p^{10}) \][/tex]
2. Recognize the Difference of Squares:
Next, we look inside the parentheses. Notice that [tex]\( m^6 - 4p^{10} \)[/tex] is a difference of squares. Let's rewrite [tex]\( m^6 \)[/tex] as [tex]\( (m^3)^2 \)[/tex] and [tex]\( 4p^{10} \)[/tex] as [tex]\( (2p^5)^2 \)[/tex]:
[tex]\[ m^6 - 4p^{10} = (m^3)^2 - (2p^5)^2 \][/tex]
3. Apply the Difference of Squares Formula:
The difference of squares formula states that [tex]\( a^2 - b^2 = (a - b)(a + b) \)[/tex].
Applying this to our expression:
[tex]\[ (m^3)^2 - (2p^5)^2 = (m^3 - 2p^5)(m^3 + 2p^5) \][/tex]
4. Combine Factors:
Substituting this result back into the expression we factored out in step 1:
[tex]\[ 4(m^6 - 4p^{10}) = 4((m^3)^2 - (2p^5)^2) = 4(m^3 - 2p^5)(m^3 + 2p^5) \][/tex]
Thus, the fully factored form of the original expression [tex]\( 4m^6 - 16p^{10} \)[/tex] is:
[tex]\[ 4(m^3 - 2p^5)(m^3 + 2p^5) \][/tex]
We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. Discover more at Westonci.ca. Return for the latest expert answers and updates on various topics.