At Westonci.ca, we connect you with the best answers from a community of experienced and knowledgeable individuals. Join our Q&A platform to get precise answers from experts in diverse fields and enhance your understanding. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.
Sagot :
To determine which of the given algebraic expressions represent a difference of squares, we need to recall that a difference of squares takes the form [tex]\( A^2 - B^2 \)[/tex], where both [tex]\( A \)[/tex] and [tex]\( B \)[/tex] are perfect squares.
Let's analyze each expression individually:
### 1. Expression: [tex]\( 9m^4 - 49n^6 \)[/tex]
- Identify components: [tex]\( 9m^4 \)[/tex] and [tex]\( 49n^6 \)[/tex]
- Check if each term is a perfect square:
- [tex]\( 9m^4 \)[/tex] can be rewritten as [tex]\( (3m^2)^2 \)[/tex]
- [tex]\( 49n^6 \)[/tex] can be rewritten as [tex]\( (7n^3)^2 \)[/tex]
Both terms are perfect squares (since [tex]\( 9m^4 = (3m^2)^2 \)[/tex] and [tex]\( 49n^6 = (7n^3)^2 \)[/tex]), so this expression is a difference of squares.
### 2. Expression: [tex]\( 32a^2 - 81n^2 \)[/tex]
- Identify components: [tex]\( 32a^2 \)[/tex] and [tex]\( 81n^2 \)[/tex]
- Check if each term is a perfect square:
- [tex]\( 32a^2 \)[/tex] is not a perfect square because 32 is not a perfect square (since [tex]\(\sqrt{32}\)[/tex] is not an integer)
- [tex]\( 81n^2 \)[/tex] can be rewritten as [tex]\( (9n)^2 \)[/tex], which is a perfect square
Since [tex]\( 32a^2 \)[/tex] is not a perfect square, this expression is not a difference of squares.
### 3. Expression: [tex]\( 16h^2 - 21t^{10} \)[/tex]
- Identify components: [tex]\( 16h^2 \)[/tex] and [tex]\( 21t^{10} \)[/tex]
- Check if each term is a perfect square:
- [tex]\( 16h^2 \)[/tex] can be rewritten as [tex]\( (4h)^2 \)[/tex]
- [tex]\( 21t^{10} \)[/tex] is not a perfect square because 21 is not a perfect square (since [tex]\(\sqrt{21}\)[/tex] is not an integer)
Since [tex]\( 21t^{10} \)[/tex] is not a perfect square, this expression is not a difference of squares.
### 4. Expression: [tex]\( 100x^2 - 10y^4 \)[/tex]
- Identify components: [tex]\( 100x^2 \)[/tex] and [tex]\( 10y^4 \)[/tex]
- Check if each term is a perfect square:
- [tex]\( 100x^2 \)[/tex] can be rewritten as [tex]\( (10x)^2 \)[/tex]
- [tex]\( 10y^4 \)[/tex] is not a perfect square because 10 is not a perfect square (since [tex]\(\sqrt{10}\)[/tex] is not an integer)
Since [tex]\( 10y^4 \)[/tex] is not a perfect square, this expression is not a difference of squares.
### Conclusion:
After analyzing each expression, we find that only the first expression [tex]\( 9m^4 - 49n^6 \)[/tex] is a difference of squares.
Hence, the expression that is a difference of squares is:
[tex]\[ 9m^4 - 49n^6 \][/tex]
Let's analyze each expression individually:
### 1. Expression: [tex]\( 9m^4 - 49n^6 \)[/tex]
- Identify components: [tex]\( 9m^4 \)[/tex] and [tex]\( 49n^6 \)[/tex]
- Check if each term is a perfect square:
- [tex]\( 9m^4 \)[/tex] can be rewritten as [tex]\( (3m^2)^2 \)[/tex]
- [tex]\( 49n^6 \)[/tex] can be rewritten as [tex]\( (7n^3)^2 \)[/tex]
Both terms are perfect squares (since [tex]\( 9m^4 = (3m^2)^2 \)[/tex] and [tex]\( 49n^6 = (7n^3)^2 \)[/tex]), so this expression is a difference of squares.
### 2. Expression: [tex]\( 32a^2 - 81n^2 \)[/tex]
- Identify components: [tex]\( 32a^2 \)[/tex] and [tex]\( 81n^2 \)[/tex]
- Check if each term is a perfect square:
- [tex]\( 32a^2 \)[/tex] is not a perfect square because 32 is not a perfect square (since [tex]\(\sqrt{32}\)[/tex] is not an integer)
- [tex]\( 81n^2 \)[/tex] can be rewritten as [tex]\( (9n)^2 \)[/tex], which is a perfect square
Since [tex]\( 32a^2 \)[/tex] is not a perfect square, this expression is not a difference of squares.
### 3. Expression: [tex]\( 16h^2 - 21t^{10} \)[/tex]
- Identify components: [tex]\( 16h^2 \)[/tex] and [tex]\( 21t^{10} \)[/tex]
- Check if each term is a perfect square:
- [tex]\( 16h^2 \)[/tex] can be rewritten as [tex]\( (4h)^2 \)[/tex]
- [tex]\( 21t^{10} \)[/tex] is not a perfect square because 21 is not a perfect square (since [tex]\(\sqrt{21}\)[/tex] is not an integer)
Since [tex]\( 21t^{10} \)[/tex] is not a perfect square, this expression is not a difference of squares.
### 4. Expression: [tex]\( 100x^2 - 10y^4 \)[/tex]
- Identify components: [tex]\( 100x^2 \)[/tex] and [tex]\( 10y^4 \)[/tex]
- Check if each term is a perfect square:
- [tex]\( 100x^2 \)[/tex] can be rewritten as [tex]\( (10x)^2 \)[/tex]
- [tex]\( 10y^4 \)[/tex] is not a perfect square because 10 is not a perfect square (since [tex]\(\sqrt{10}\)[/tex] is not an integer)
Since [tex]\( 10y^4 \)[/tex] is not a perfect square, this expression is not a difference of squares.
### Conclusion:
After analyzing each expression, we find that only the first expression [tex]\( 9m^4 - 49n^6 \)[/tex] is a difference of squares.
Hence, the expression that is a difference of squares is:
[tex]\[ 9m^4 - 49n^6 \][/tex]
We hope our answers were helpful. Return anytime for more information and answers to any other questions you may have. Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. Westonci.ca is your go-to source for reliable answers. Return soon for more expert insights.