Westonci.ca is the Q&A platform that connects you with experts who provide accurate and detailed answers. Explore our Q&A platform to find in-depth answers from a wide range of experts in different fields. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.
Sagot :
To solve the equation [tex]\(\cos(\theta) = -\frac{1}{2}\)[/tex] for [tex]\(\theta\)[/tex] in the interval [tex]\(0^\circ \leq \theta < 360^\circ\)[/tex], we need to find all angles that produce a cosine of [tex]\(-\frac{1}{2}\)[/tex]. Here is a detailed, step-by-step solution:
1. Understanding the Range of Cosine Values:
- Cosine values range from -1 to 1.
- The function [tex]\(\cos\)[/tex] is negative in the second and third quadrants of the unit circle.
2. Identifying Reference Angle:
- The cosine of [tex]\(-\frac{1}{2}\)[/tex] corresponds to an angle whose reference angle with [tex]\(\cos\)[/tex] is [tex]\(\frac{1}{2}\)[/tex].
- The reference angle for [tex]\(\cos^{-1}(\frac{1}{2})\)[/tex] is [tex]\(60^\circ\)[/tex], because [tex]\(\cos(60^\circ) = \frac{1}{2}\)[/tex].
3. Determining Relevant Angles:
- Since cosine is [tex]\(-\frac{1}{2}\)[/tex] in the second and third quadrants:
- In the second quadrant, the angle is [tex]\(180^\circ - 60^\circ = 120^\circ\)[/tex].
- In the third quadrant, the angle is [tex]\(180^\circ + 60^\circ = 240^\circ\)[/tex].
4. Validation:
- To confirm, we can check these angles:
- For [tex]\(\theta = 120^\circ\)[/tex]:
[tex]\[ \cos(120^\circ) = \cos(180^\circ - 60^\circ) = -\cos(60^\circ) = -\frac{1}{2} \][/tex]
- For [tex]\(\theta = 240^\circ\)[/tex]:
[tex]\[ \cos(240^\circ) = \cos(180^\circ + 60^\circ) = -\cos(60^\circ) = -\frac{1}{2} \][/tex]
- Both angles satisfy the equation [tex]\(\cos(\theta) = -\frac{1}{2}\)[/tex].
Thus, the angles [tex]\( \theta \)[/tex] that satisfy the given equation in the interval [tex]\(0^\circ \leq \theta < 360^\circ\)[/tex] are:
[tex]\[ \boxed{120.0^\circ \text{ and } 240.0^\circ} \][/tex]
1. Understanding the Range of Cosine Values:
- Cosine values range from -1 to 1.
- The function [tex]\(\cos\)[/tex] is negative in the second and third quadrants of the unit circle.
2. Identifying Reference Angle:
- The cosine of [tex]\(-\frac{1}{2}\)[/tex] corresponds to an angle whose reference angle with [tex]\(\cos\)[/tex] is [tex]\(\frac{1}{2}\)[/tex].
- The reference angle for [tex]\(\cos^{-1}(\frac{1}{2})\)[/tex] is [tex]\(60^\circ\)[/tex], because [tex]\(\cos(60^\circ) = \frac{1}{2}\)[/tex].
3. Determining Relevant Angles:
- Since cosine is [tex]\(-\frac{1}{2}\)[/tex] in the second and third quadrants:
- In the second quadrant, the angle is [tex]\(180^\circ - 60^\circ = 120^\circ\)[/tex].
- In the third quadrant, the angle is [tex]\(180^\circ + 60^\circ = 240^\circ\)[/tex].
4. Validation:
- To confirm, we can check these angles:
- For [tex]\(\theta = 120^\circ\)[/tex]:
[tex]\[ \cos(120^\circ) = \cos(180^\circ - 60^\circ) = -\cos(60^\circ) = -\frac{1}{2} \][/tex]
- For [tex]\(\theta = 240^\circ\)[/tex]:
[tex]\[ \cos(240^\circ) = \cos(180^\circ + 60^\circ) = -\cos(60^\circ) = -\frac{1}{2} \][/tex]
- Both angles satisfy the equation [tex]\(\cos(\theta) = -\frac{1}{2}\)[/tex].
Thus, the angles [tex]\( \theta \)[/tex] that satisfy the given equation in the interval [tex]\(0^\circ \leq \theta < 360^\circ\)[/tex] are:
[tex]\[ \boxed{120.0^\circ \text{ and } 240.0^\circ} \][/tex]
We hope our answers were helpful. Return anytime for more information and answers to any other questions you may have. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. We're here to help at Westonci.ca. Keep visiting for the best answers to your questions.