Westonci.ca offers quick and accurate answers to your questions. Join our community and get the insights you need today. Ask your questions and receive accurate answers from professionals with extensive experience in various fields on our platform. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.

A normal human heart, beating about once per second, creates a maximum 4.00 mV potential across 0.350 m of a person's chest, producing a 1.00 Hz electromagnetic wave.

1. What is the maximum electric field strength [tex]\( E \)[/tex] produced?
[tex]\[
E = \text{______ V/m}
\][/tex]

2. What is the corresponding maximum magnetic field strength [tex]\( B \)[/tex] in the electromagnetic wave?
[tex]\[
B = \text{______ T}
\][/tex]

3. What is the wavelength [tex]\( \lambda \)[/tex] of the electromagnetic wave?
[tex]\[
\lambda = \text{______} \times 10^{ y } \text{ m}
\][/tex]


Sagot :

### Question Analysis
We need to calculate three things:
1. The maximum electric field strength [tex]\( E \)[/tex] produced.
2. The corresponding maximum magnetic field strength [tex]\( B \)[/tex] in the electromagnetic wave.
3. The wavelength [tex]\( \lambda \)[/tex] of the electromagnetic wave.

Given values are:
- Potential difference, [tex]\( V = 4.00 \: \text{mV} = 4.00 \times 10^{-3} \: \text{V} \)[/tex]
- Distance, [tex]\( d = 0.350 \: \text{m} \)[/tex]
- Frequency, [tex]\( f = 1.00 \: \text{Hz} \)[/tex]
- Speed of light in vacuum, [tex]\( c = 3.00 \times 10^8 \: \text{m/s} \)[/tex]

### Solutions

1. Maximum Electric Field Strength [tex]\( E \)[/tex]
[tex]\[ E = \frac{V}{d} \][/tex]

Substituting the given values:
[tex]\[ E = \frac{4.00 \times 10^{-3} \: \text{V}}{0.350 \: \text{m}} = 0.01142857142857143 \: \text{V/m} \][/tex]

Therefore,
[tex]\[ E \approx 0.0114 \: \text{V/m} \][/tex]

2. Maximum Magnetic Field Strength [tex]\( B \)[/tex]
The relationship between the electric field [tex]\( E \)[/tex] and the magnetic field [tex]\( B \)[/tex] in an electromagnetic wave is given by:
[tex]\[ E = c \times B \][/tex]

Solving for [tex]\( B \)[/tex]:
[tex]\[ B = \frac{E}{c} \][/tex]

Substituting the value of [tex]\( E \)[/tex] and [tex]\( c \)[/tex]:
[tex]\[ B = \frac{0.01142857142857143 \: \text{V/m}}{3.00 \times 10^8 \: \text{m/s}} = 3.80952380952381 \times 10^{-11} \: \text{T} \][/tex]

Therefore,
[tex]\[ B = 3.80952380952381 \times 10^{-11} \: \text{T} \][/tex]

3. Wavelength [tex]\( \lambda \)[/tex]
The wavelength [tex]\( \lambda \)[/tex] of the electromagnetic wave is given by:
[tex]\[ \lambda = \frac{c}{f} \][/tex]

Substituting the value of [tex]\( c \)[/tex] and [tex]\( f \)[/tex]:
[tex]\[ \lambda = \frac{3.00 \times 10^8 \: \text{m/s}}{1.00 \: \text{Hz}} = 300000000.0 \: \text{m} \][/tex]

Therefore,
[tex]\[ \lambda = 3.00 \times 10^8 \: \text{m} \][/tex]