At Westonci.ca, we connect you with experts who provide detailed answers to your most pressing questions. Start exploring now! Get expert answers to your questions quickly and accurately from our dedicated community of professionals. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.

Solve the formula for calculating the perimeter of a parallelogram with sides [tex]\(b\)[/tex] and [tex]\(c\)[/tex], for [tex]\(c\)[/tex].

[tex]\[ P = 2b + 2c \][/tex]

A. [tex]\(c = \frac{P}{4b}\)[/tex]

B. [tex]\(c = \frac{P}{2} - b\)[/tex]

C. [tex]\(c = \frac{P}{2} + b\)[/tex]

D. [tex]\(c = \frac{P}{2} - \frac{b}{2}\)[/tex]


Sagot :

To solve for [tex]\( c \)[/tex] in the given formula for the perimeter [tex]\( P \)[/tex] of a parallelogram with sides [tex]\( b \)[/tex] and [tex]\( c \)[/tex], we start with the equation:

[tex]\[ P = 2b + 2c \][/tex]

### Step-by-Step Solution:

1. Isolate the term involving [tex]\( c \)[/tex]:
[tex]\[ P = 2b + 2c \][/tex]
Subtract [tex]\( 2b \)[/tex] from both sides:
[tex]\[ P - 2b = 2c \][/tex]

2. Solve for [tex]\( c \)[/tex]:
Divide both sides by 2:
[tex]\[ c = \frac{P - 2b}{2} \][/tex]

3. Express the equation in a simpler form:
The equation [tex]\( c = \frac{P - 2b}{2} \)[/tex] can also be written as:
[tex]\[ c = \frac{P}{2} - b \][/tex]

### Matching with Given Choices:

Now match this derived equation [tex]\( c = \frac{P}{2} - b \)[/tex] with the given choices:

- A. [tex]\( c = \frac{P}{4b} \)[/tex]
- B. [tex]\( c = \frac{P}{2} - b \)[/tex]
- C. [tex]\( c = \frac{P}{2} + b \)[/tex]
- D. [tex]\( c = \frac{\rho}{2} - \frac{b}{2} \)[/tex]

From the options, we see that the matching choice is:

- B. [tex]\( c = \frac{P}{2} - b \)[/tex]

So the correct answer is:

[tex]\[ \boxed{B} \][/tex]