At Westonci.ca, we make it easy to get the answers you need from a community of informed and experienced contributors. Experience the ease of finding quick and accurate answers to your questions from professionals on our platform. Get quick and reliable solutions to your questions from a community of experienced experts on our platform.
Sagot :
Let's relate each transformation of the function [tex]\( f \)[/tex] to a feature of the transformed function.
1. [tex]\( y \)[/tex]-intercept at [tex]\( (0, 2) \)[/tex]
- The function [tex]\( h(x) = f(x) + 2 \)[/tex] is a vertical shift of [tex]\( f(x) \)[/tex] upwards by 2 units. For any input [tex]\( x \)[/tex], [tex]\( f(x) \)[/tex] will be increased by 2. Consequently, the [tex]\( y \)[/tex]-intercept of the original function [tex]\( f(0) \)[/tex] is now [tex]\( f(0) + 2 \)[/tex]. Hence, if the new [tex]\( y \)[/tex]-intercept is at [tex]\( (0, 2) \)[/tex], it perfectly matches with [tex]\( h(x) = f(x) + 2 \)[/tex].
2. Asymptote of [tex]\( y = 2 \)[/tex]
- The function [tex]\( h(x) = f(x) + 2 \)[/tex] also impacts horizontal asymptotes. If the original function [tex]\( f(x) \)[/tex] has a horizontal asymptote at [tex]\( y = 0 \)[/tex], then adding 2 to [tex]\( f(x) \)[/tex] shifts the asymptote to [tex]\( y = 2 \)[/tex]. Therefore, the asymptote of [tex]\( y = 2 \)[/tex] corresponds to [tex]\( h(x) = f(x) + 2 \)[/tex].
3. [tex]\( y \)[/tex]-intercept at [tex]\( (0, 4) \)[/tex]
- The function [tex]\( g(x) = 2f(x) \)[/tex] illustrates a vertical stretch of the function [tex]\( f(x) \)[/tex] by a factor of 2. Therefore, if the original function [tex]\( f(x) \)[/tex] had a [tex]\( y \)[/tex]-intercept at [tex]\( f(0) \)[/tex], the new [tex]\( y \)[/tex]-intercept would be [tex]\( 2 \cdot f(0) \)[/tex]. Thus, if the new [tex]\( y \)[/tex]-intercept is at [tex]\( (0, 4) \)[/tex], then [tex]\( f(0) \)[/tex] must have been [tex]\( 4/2 = 2 \)[/tex]. So, [tex]\( g(x) = 2f(x) \)[/tex] corresponds to a [tex]\( y \)[/tex]-intercept at [tex]\( (0, 4) \)[/tex].
4. Function decreases as [tex]\( x \)[/tex] increases
- The function [tex]\( m(x) = -f(x) \)[/tex] represents a reflection across the [tex]\( x \)[/tex]-axis. If [tex]\( f(x) \)[/tex] was increasing, [tex]\( -f(x) \)[/tex] will be decreasing because flipping the function vertically inverts its growth properties. Thus, [tex]\( m(x) = -f(x) \)[/tex] corresponds to a function that decreases as [tex]\( x \)[/tex] increases.
Summarizing the transformations and their corresponding features:
[tex]\[ \begin{array}{l} h(x)=f(x)+2 \rightarrow y\text{-intercept at }(0, 2) \\ h(x)=f(x)+2 \rightarrow \text{asymptote of } y=2 \\ g(x)=2 f(x) \rightarrow y\text{-intercept at } (0, 4) \\ m(x)=-f(x) \rightarrow \text{function decreases as } x \text{ increases} \end{array} \][/tex]
1. [tex]\( y \)[/tex]-intercept at [tex]\( (0, 2) \)[/tex]
- The function [tex]\( h(x) = f(x) + 2 \)[/tex] is a vertical shift of [tex]\( f(x) \)[/tex] upwards by 2 units. For any input [tex]\( x \)[/tex], [tex]\( f(x) \)[/tex] will be increased by 2. Consequently, the [tex]\( y \)[/tex]-intercept of the original function [tex]\( f(0) \)[/tex] is now [tex]\( f(0) + 2 \)[/tex]. Hence, if the new [tex]\( y \)[/tex]-intercept is at [tex]\( (0, 2) \)[/tex], it perfectly matches with [tex]\( h(x) = f(x) + 2 \)[/tex].
2. Asymptote of [tex]\( y = 2 \)[/tex]
- The function [tex]\( h(x) = f(x) + 2 \)[/tex] also impacts horizontal asymptotes. If the original function [tex]\( f(x) \)[/tex] has a horizontal asymptote at [tex]\( y = 0 \)[/tex], then adding 2 to [tex]\( f(x) \)[/tex] shifts the asymptote to [tex]\( y = 2 \)[/tex]. Therefore, the asymptote of [tex]\( y = 2 \)[/tex] corresponds to [tex]\( h(x) = f(x) + 2 \)[/tex].
3. [tex]\( y \)[/tex]-intercept at [tex]\( (0, 4) \)[/tex]
- The function [tex]\( g(x) = 2f(x) \)[/tex] illustrates a vertical stretch of the function [tex]\( f(x) \)[/tex] by a factor of 2. Therefore, if the original function [tex]\( f(x) \)[/tex] had a [tex]\( y \)[/tex]-intercept at [tex]\( f(0) \)[/tex], the new [tex]\( y \)[/tex]-intercept would be [tex]\( 2 \cdot f(0) \)[/tex]. Thus, if the new [tex]\( y \)[/tex]-intercept is at [tex]\( (0, 4) \)[/tex], then [tex]\( f(0) \)[/tex] must have been [tex]\( 4/2 = 2 \)[/tex]. So, [tex]\( g(x) = 2f(x) \)[/tex] corresponds to a [tex]\( y \)[/tex]-intercept at [tex]\( (0, 4) \)[/tex].
4. Function decreases as [tex]\( x \)[/tex] increases
- The function [tex]\( m(x) = -f(x) \)[/tex] represents a reflection across the [tex]\( x \)[/tex]-axis. If [tex]\( f(x) \)[/tex] was increasing, [tex]\( -f(x) \)[/tex] will be decreasing because flipping the function vertically inverts its growth properties. Thus, [tex]\( m(x) = -f(x) \)[/tex] corresponds to a function that decreases as [tex]\( x \)[/tex] increases.
Summarizing the transformations and their corresponding features:
[tex]\[ \begin{array}{l} h(x)=f(x)+2 \rightarrow y\text{-intercept at }(0, 2) \\ h(x)=f(x)+2 \rightarrow \text{asymptote of } y=2 \\ g(x)=2 f(x) \rightarrow y\text{-intercept at } (0, 4) \\ m(x)=-f(x) \rightarrow \text{function decreases as } x \text{ increases} \end{array} \][/tex]
Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. Your questions are important to us at Westonci.ca. Visit again for expert answers and reliable information.