Welcome to Westonci.ca, the Q&A platform where your questions are met with detailed answers from experienced experts. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals. Get quick and reliable solutions to your questions from a community of experienced experts on our platform.
Sagot :
To find all angles [tex]\(0^{\circ} \leq \theta < 360^{\circ}\)[/tex] that satisfy the equation [tex]\(\cos (\theta) = \frac{1}{2}\)[/tex], we will go through the following steps:
1. Identify the principal angles: The cosine function is positive in the first and fourth quadrants. We first determine the reference angle for [tex]\(\cos \theta = \frac{1}{2}\)[/tex].
2. Determine the reference angle: The reference angle is the angle formed with the x-axis, and for [tex]\(\cos^{-1}\left(\frac{1}{2}\right)\)[/tex], this is [tex]\(60^\circ\)[/tex]. Thus, one solution in the first quadrant is:
[tex]\[ \theta = 60^\circ \][/tex]
3. Find all angles in the specified range: Since cosine is also positive in the fourth quadrant, we need another angle in that quadrant where cosine will still be [tex]\(\frac{1}{2}\)[/tex]. The angle in the fourth quadrant corresponding to [tex]\(60^\circ\)[/tex] can be found by subtracting [tex]\(60^\circ\)[/tex] from [tex]\(360^\circ\)[/tex]:
[tex]\[ \theta = 360^\circ - 60^\circ = 300^\circ \][/tex]
4. List the unique solutions: We now have two angles within the range [tex]\(0^\circ \leq \theta < 360^\circ\)[/tex] that satisfy the given equation:
[tex]\[ \theta = 60^\circ \quad \text{and} \quad \theta = 300^\circ \][/tex]
5. Round the solutions to the nearest tenth of a degree: Given in this problem, the answers are already in degrees that are whole numbers, thus no further rounding is required.
Therefore, the angles that satisfy the equation [tex]\(\cos (\theta) = \frac{1}{2}\)[/tex] within the specified range are:
[tex]\[ 60.0^\circ \quad \text{and} \quad 300.0^\circ \][/tex]
1. Identify the principal angles: The cosine function is positive in the first and fourth quadrants. We first determine the reference angle for [tex]\(\cos \theta = \frac{1}{2}\)[/tex].
2. Determine the reference angle: The reference angle is the angle formed with the x-axis, and for [tex]\(\cos^{-1}\left(\frac{1}{2}\right)\)[/tex], this is [tex]\(60^\circ\)[/tex]. Thus, one solution in the first quadrant is:
[tex]\[ \theta = 60^\circ \][/tex]
3. Find all angles in the specified range: Since cosine is also positive in the fourth quadrant, we need another angle in that quadrant where cosine will still be [tex]\(\frac{1}{2}\)[/tex]. The angle in the fourth quadrant corresponding to [tex]\(60^\circ\)[/tex] can be found by subtracting [tex]\(60^\circ\)[/tex] from [tex]\(360^\circ\)[/tex]:
[tex]\[ \theta = 360^\circ - 60^\circ = 300^\circ \][/tex]
4. List the unique solutions: We now have two angles within the range [tex]\(0^\circ \leq \theta < 360^\circ\)[/tex] that satisfy the given equation:
[tex]\[ \theta = 60^\circ \quad \text{and} \quad \theta = 300^\circ \][/tex]
5. Round the solutions to the nearest tenth of a degree: Given in this problem, the answers are already in degrees that are whole numbers, thus no further rounding is required.
Therefore, the angles that satisfy the equation [tex]\(\cos (\theta) = \frac{1}{2}\)[/tex] within the specified range are:
[tex]\[ 60.0^\circ \quad \text{and} \quad 300.0^\circ \][/tex]
Thanks for stopping by. We are committed to providing the best answers for all your questions. See you again soon. We hope this was helpful. Please come back whenever you need more information or answers to your queries. Westonci.ca is committed to providing accurate answers. Come back soon for more trustworthy information.