Westonci.ca is the trusted Q&A platform where you can get reliable answers from a community of knowledgeable contributors. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.
Sagot :
To determine which reaction is an example of an Arrhenius base, we need to understand the definition of an Arrhenius base. An Arrhenius base is a substance that increases the concentration of [tex]\(\text{OH}^-\)[/tex] ions in an aqueous solution.
Let's analyze each reaction step-by-step:
1. Reaction 1:
[tex]\[ \text{NaOH (s)} \rightarrow \text{Na}^+(\text{aq}) + \text{OH}^-(\text{aq}) \][/tex]
Sodium hydroxide ([tex]\(\text{NaOH}\)[/tex]) dissociates in water to produce [tex]\(\text{Na}^+\)[/tex] and [tex]\(\text{OH}^-\)[/tex] ions. The release of [tex]\(\text{OH}^-\)[/tex] ions in the solution is a clear characteristic of an Arrhenius base.
2. Reaction 2:
[tex]\[ \text{HCl (g)} + \text{H}_2\text{O (l)} \rightarrow \text{H}_3\text{O}^+(\text{aq}) + \text{Cl}^-(\text{aq}) \][/tex]
Hydrochloric acid ([tex]\(\text{HCl}\)[/tex]) reacts with water to form [tex]\(\text{H}_3\text{O}^+\)[/tex] and [tex]\(\text{Cl}^-\)[/tex] ions. This reaction produces hydronium ions ([tex]\(\text{H}_3\text{O}^+\)[/tex]), which indicates it's an acid, not a base.
3. Reaction 3:
[tex]\[ \text{CH}_3\text{COOH (aq)} + \text{H}_2\text{O (l)} \rightarrow \text{H}_3\text{O}^+(\text{aq}) + \text{CH}_3\text{COO}^-(\text{aq}) \][/tex]
Acetic acid ([tex]\(\text{CH}_3\text{COOH}\)[/tex]) reacts with water to form [tex]\(\text{H}_3\text{O}^+\)[/tex] and [tex]\(\text{CH}_3\text{COO}^-\)[/tex] ions. Similar to Reaction 2, the production of [tex]\(\text{H}_3\text{O}^+\)[/tex] ions indicates that acetic acid is also an acid.
4. Reaction 4:
[tex]\[ \text{NH}_3 (\text{aq}) + \text{HC}_2 \text{H}_3 \text{O}_2 (\text{aq}) \rightarrow \text{NH}_4^+ (\text{aq}) + \text{C}_2 \text{H}_3 \text{O}_2^- (\text{aq}) \][/tex]
Ammonia ([tex]\(\text{NH}_3\)[/tex]) reacts with acetic acid ([tex]\(\text{HC}_2\text{H}_3\text{O}_2\)[/tex]) to produce ammonium ([tex]\(\text{NH}_4^+\)[/tex]) and acetate ([tex]\(\text{C}_2\text{H}_3\text{O}_2^-\)[/tex]) ions. This reaction involves a weak base ([tex]\(\text{NH}_3\)[/tex]) and a weak acid ([tex]\(\text{HC}_2\text{H}_3\text{O}_2\)[/tex]), but it does not explicitly produce [tex]\(\text{OH}^-\)[/tex] ions.
Given this analysis, the reaction that displays an example of an Arrhenius base is:
[tex]\[ \text{NaOH (s)} \rightarrow \text{Na}^+(\text{aq}) + \text{OH}^-(\text{aq}) \][/tex]
Therefore, the correct reaction is the first one. This corresponds to the index [tex]\(0\)[/tex] in the list provided.
Let's analyze each reaction step-by-step:
1. Reaction 1:
[tex]\[ \text{NaOH (s)} \rightarrow \text{Na}^+(\text{aq}) + \text{OH}^-(\text{aq}) \][/tex]
Sodium hydroxide ([tex]\(\text{NaOH}\)[/tex]) dissociates in water to produce [tex]\(\text{Na}^+\)[/tex] and [tex]\(\text{OH}^-\)[/tex] ions. The release of [tex]\(\text{OH}^-\)[/tex] ions in the solution is a clear characteristic of an Arrhenius base.
2. Reaction 2:
[tex]\[ \text{HCl (g)} + \text{H}_2\text{O (l)} \rightarrow \text{H}_3\text{O}^+(\text{aq}) + \text{Cl}^-(\text{aq}) \][/tex]
Hydrochloric acid ([tex]\(\text{HCl}\)[/tex]) reacts with water to form [tex]\(\text{H}_3\text{O}^+\)[/tex] and [tex]\(\text{Cl}^-\)[/tex] ions. This reaction produces hydronium ions ([tex]\(\text{H}_3\text{O}^+\)[/tex]), which indicates it's an acid, not a base.
3. Reaction 3:
[tex]\[ \text{CH}_3\text{COOH (aq)} + \text{H}_2\text{O (l)} \rightarrow \text{H}_3\text{O}^+(\text{aq}) + \text{CH}_3\text{COO}^-(\text{aq}) \][/tex]
Acetic acid ([tex]\(\text{CH}_3\text{COOH}\)[/tex]) reacts with water to form [tex]\(\text{H}_3\text{O}^+\)[/tex] and [tex]\(\text{CH}_3\text{COO}^-\)[/tex] ions. Similar to Reaction 2, the production of [tex]\(\text{H}_3\text{O}^+\)[/tex] ions indicates that acetic acid is also an acid.
4. Reaction 4:
[tex]\[ \text{NH}_3 (\text{aq}) + \text{HC}_2 \text{H}_3 \text{O}_2 (\text{aq}) \rightarrow \text{NH}_4^+ (\text{aq}) + \text{C}_2 \text{H}_3 \text{O}_2^- (\text{aq}) \][/tex]
Ammonia ([tex]\(\text{NH}_3\)[/tex]) reacts with acetic acid ([tex]\(\text{HC}_2\text{H}_3\text{O}_2\)[/tex]) to produce ammonium ([tex]\(\text{NH}_4^+\)[/tex]) and acetate ([tex]\(\text{C}_2\text{H}_3\text{O}_2^-\)[/tex]) ions. This reaction involves a weak base ([tex]\(\text{NH}_3\)[/tex]) and a weak acid ([tex]\(\text{HC}_2\text{H}_3\text{O}_2\)[/tex]), but it does not explicitly produce [tex]\(\text{OH}^-\)[/tex] ions.
Given this analysis, the reaction that displays an example of an Arrhenius base is:
[tex]\[ \text{NaOH (s)} \rightarrow \text{Na}^+(\text{aq}) + \text{OH}^-(\text{aq}) \][/tex]
Therefore, the correct reaction is the first one. This corresponds to the index [tex]\(0\)[/tex] in the list provided.
Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. We hope this was helpful. Please come back whenever you need more information or answers to your queries. We're dedicated to helping you find the answers you need at Westonci.ca. Don't hesitate to return for more.