At Westonci.ca, we connect you with the best answers from a community of experienced and knowledgeable individuals. Join our platform to connect with experts ready to provide detailed answers to your questions in various areas. Join our platform to connect with experts ready to provide precise answers to your questions in different areas.
Sagot :
To determine which linear function has the steepest slope, we first need to identify the slope of each given linear equation.
1. For the equation [tex]\( y = -8x + 5 \)[/tex], the slope is directly given as [tex]\(-8\)[/tex].
2. For the equation [tex]\( y - 9 = -2(x + 1) \)[/tex], we need to put it into the slope-intercept form [tex]\( y = mx + b \)[/tex]:
[tex]\[ y - 9 = -2(x + 1) \][/tex]
[tex]\[ y - 9 = -2x - 2 \][/tex]
[tex]\[ y = -2x + 7 \][/tex]
Here, the slope is [tex]\(-2\)[/tex].
3. For the equation [tex]\( y = 7x - 3 \)[/tex], the slope is directly given as [tex]\( 7 \)[/tex].
4. For the equation [tex]\( y + 2 = 6(x + 10) \)[/tex], we need to put it into the slope-intercept form [tex]\( y = mx + b \)[/tex]:
[tex]\[ y + 2 = 6(x + 10) \][/tex]
[tex]\[ y + 2 = 6x + 60 \][/tex]
[tex]\[ y = 6x + 58 \][/tex]
Here, the slope is [tex]\( 6 \)[/tex].
Now, we have identified the slopes of each linear function:
- Slope of [tex]\( y = -8x + 5 \)[/tex] is [tex]\(-8\)[/tex]
- Slope of [tex]\( y - 9 = -2(x + 1) \)[/tex] is [tex]\(-2\)[/tex]
- Slope of [tex]\( y = 7x - 3 \)[/tex] is [tex]\(7\)[/tex]
- Slope of [tex]\( y + 2 = 6(x + 10) \)[/tex] is [tex]\(6\)[/tex]
To determine the steepest slope, we need to look at the absolute values of these slopes:
- [tex]\( |\text{slope}| \)[/tex] for [tex]\(-8\)[/tex] is [tex]\( 8 \)[/tex]
- [tex]\( |\text{slope}| \)[/tex] for [tex]\(-2\)[/tex] is [tex]\( 2 \)[/tex]
- [tex]\( |\text{slope}| \)[/tex] for [tex]\( 7 \)[/tex] is [tex]\( 7 \)[/tex]
- [tex]\( |\text{slope}| \)[/tex] for [tex]\( 6 \)[/tex] is [tex]\( 6 \)[/tex]
Comparing these absolute values, the largest one is [tex]\(8\)[/tex].
Therefore, the linear function with the steepest slope is [tex]\( y = -8x + 5 \)[/tex], which has a slope of [tex]\(-8\)[/tex].
1. For the equation [tex]\( y = -8x + 5 \)[/tex], the slope is directly given as [tex]\(-8\)[/tex].
2. For the equation [tex]\( y - 9 = -2(x + 1) \)[/tex], we need to put it into the slope-intercept form [tex]\( y = mx + b \)[/tex]:
[tex]\[ y - 9 = -2(x + 1) \][/tex]
[tex]\[ y - 9 = -2x - 2 \][/tex]
[tex]\[ y = -2x + 7 \][/tex]
Here, the slope is [tex]\(-2\)[/tex].
3. For the equation [tex]\( y = 7x - 3 \)[/tex], the slope is directly given as [tex]\( 7 \)[/tex].
4. For the equation [tex]\( y + 2 = 6(x + 10) \)[/tex], we need to put it into the slope-intercept form [tex]\( y = mx + b \)[/tex]:
[tex]\[ y + 2 = 6(x + 10) \][/tex]
[tex]\[ y + 2 = 6x + 60 \][/tex]
[tex]\[ y = 6x + 58 \][/tex]
Here, the slope is [tex]\( 6 \)[/tex].
Now, we have identified the slopes of each linear function:
- Slope of [tex]\( y = -8x + 5 \)[/tex] is [tex]\(-8\)[/tex]
- Slope of [tex]\( y - 9 = -2(x + 1) \)[/tex] is [tex]\(-2\)[/tex]
- Slope of [tex]\( y = 7x - 3 \)[/tex] is [tex]\(7\)[/tex]
- Slope of [tex]\( y + 2 = 6(x + 10) \)[/tex] is [tex]\(6\)[/tex]
To determine the steepest slope, we need to look at the absolute values of these slopes:
- [tex]\( |\text{slope}| \)[/tex] for [tex]\(-8\)[/tex] is [tex]\( 8 \)[/tex]
- [tex]\( |\text{slope}| \)[/tex] for [tex]\(-2\)[/tex] is [tex]\( 2 \)[/tex]
- [tex]\( |\text{slope}| \)[/tex] for [tex]\( 7 \)[/tex] is [tex]\( 7 \)[/tex]
- [tex]\( |\text{slope}| \)[/tex] for [tex]\( 6 \)[/tex] is [tex]\( 6 \)[/tex]
Comparing these absolute values, the largest one is [tex]\(8\)[/tex].
Therefore, the linear function with the steepest slope is [tex]\( y = -8x + 5 \)[/tex], which has a slope of [tex]\(-8\)[/tex].
We hope our answers were helpful. Return anytime for more information and answers to any other questions you may have. We hope this was helpful. Please come back whenever you need more information or answers to your queries. Thank you for choosing Westonci.ca as your information source. We look forward to your next visit.