Explore Westonci.ca, the top Q&A platform where your questions are answered by professionals and enthusiasts alike. Explore our Q&A platform to find in-depth answers from a wide range of experts in different fields. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.
Sagot :
To determine which linear function has the steepest slope, we first need to identify the slope of each given linear equation.
1. For the equation [tex]\( y = -8x + 5 \)[/tex], the slope is directly given as [tex]\(-8\)[/tex].
2. For the equation [tex]\( y - 9 = -2(x + 1) \)[/tex], we need to put it into the slope-intercept form [tex]\( y = mx + b \)[/tex]:
[tex]\[ y - 9 = -2(x + 1) \][/tex]
[tex]\[ y - 9 = -2x - 2 \][/tex]
[tex]\[ y = -2x + 7 \][/tex]
Here, the slope is [tex]\(-2\)[/tex].
3. For the equation [tex]\( y = 7x - 3 \)[/tex], the slope is directly given as [tex]\( 7 \)[/tex].
4. For the equation [tex]\( y + 2 = 6(x + 10) \)[/tex], we need to put it into the slope-intercept form [tex]\( y = mx + b \)[/tex]:
[tex]\[ y + 2 = 6(x + 10) \][/tex]
[tex]\[ y + 2 = 6x + 60 \][/tex]
[tex]\[ y = 6x + 58 \][/tex]
Here, the slope is [tex]\( 6 \)[/tex].
Now, we have identified the slopes of each linear function:
- Slope of [tex]\( y = -8x + 5 \)[/tex] is [tex]\(-8\)[/tex]
- Slope of [tex]\( y - 9 = -2(x + 1) \)[/tex] is [tex]\(-2\)[/tex]
- Slope of [tex]\( y = 7x - 3 \)[/tex] is [tex]\(7\)[/tex]
- Slope of [tex]\( y + 2 = 6(x + 10) \)[/tex] is [tex]\(6\)[/tex]
To determine the steepest slope, we need to look at the absolute values of these slopes:
- [tex]\( |\text{slope}| \)[/tex] for [tex]\(-8\)[/tex] is [tex]\( 8 \)[/tex]
- [tex]\( |\text{slope}| \)[/tex] for [tex]\(-2\)[/tex] is [tex]\( 2 \)[/tex]
- [tex]\( |\text{slope}| \)[/tex] for [tex]\( 7 \)[/tex] is [tex]\( 7 \)[/tex]
- [tex]\( |\text{slope}| \)[/tex] for [tex]\( 6 \)[/tex] is [tex]\( 6 \)[/tex]
Comparing these absolute values, the largest one is [tex]\(8\)[/tex].
Therefore, the linear function with the steepest slope is [tex]\( y = -8x + 5 \)[/tex], which has a slope of [tex]\(-8\)[/tex].
1. For the equation [tex]\( y = -8x + 5 \)[/tex], the slope is directly given as [tex]\(-8\)[/tex].
2. For the equation [tex]\( y - 9 = -2(x + 1) \)[/tex], we need to put it into the slope-intercept form [tex]\( y = mx + b \)[/tex]:
[tex]\[ y - 9 = -2(x + 1) \][/tex]
[tex]\[ y - 9 = -2x - 2 \][/tex]
[tex]\[ y = -2x + 7 \][/tex]
Here, the slope is [tex]\(-2\)[/tex].
3. For the equation [tex]\( y = 7x - 3 \)[/tex], the slope is directly given as [tex]\( 7 \)[/tex].
4. For the equation [tex]\( y + 2 = 6(x + 10) \)[/tex], we need to put it into the slope-intercept form [tex]\( y = mx + b \)[/tex]:
[tex]\[ y + 2 = 6(x + 10) \][/tex]
[tex]\[ y + 2 = 6x + 60 \][/tex]
[tex]\[ y = 6x + 58 \][/tex]
Here, the slope is [tex]\( 6 \)[/tex].
Now, we have identified the slopes of each linear function:
- Slope of [tex]\( y = -8x + 5 \)[/tex] is [tex]\(-8\)[/tex]
- Slope of [tex]\( y - 9 = -2(x + 1) \)[/tex] is [tex]\(-2\)[/tex]
- Slope of [tex]\( y = 7x - 3 \)[/tex] is [tex]\(7\)[/tex]
- Slope of [tex]\( y + 2 = 6(x + 10) \)[/tex] is [tex]\(6\)[/tex]
To determine the steepest slope, we need to look at the absolute values of these slopes:
- [tex]\( |\text{slope}| \)[/tex] for [tex]\(-8\)[/tex] is [tex]\( 8 \)[/tex]
- [tex]\( |\text{slope}| \)[/tex] for [tex]\(-2\)[/tex] is [tex]\( 2 \)[/tex]
- [tex]\( |\text{slope}| \)[/tex] for [tex]\( 7 \)[/tex] is [tex]\( 7 \)[/tex]
- [tex]\( |\text{slope}| \)[/tex] for [tex]\( 6 \)[/tex] is [tex]\( 6 \)[/tex]
Comparing these absolute values, the largest one is [tex]\(8\)[/tex].
Therefore, the linear function with the steepest slope is [tex]\( y = -8x + 5 \)[/tex], which has a slope of [tex]\(-8\)[/tex].
Thank you for your visit. We are dedicated to helping you find the information you need, whenever you need it. Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. Discover more at Westonci.ca. Return for the latest expert answers and updates on various topics.