At Westonci.ca, we make it easy to get the answers you need from a community of informed and experienced contributors. Experience the convenience of finding accurate answers to your questions from knowledgeable professionals on our platform. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.
Sagot :
To solve the integral [tex]\( \int_1^5 \frac{2 \cos (3 x)}{x} \, dx \)[/tex] using numerical methods with [tex]\( n = 8 \)[/tex] subintervals, follow these steps for each method:
### (a) Trapezoidal Rule
The trapezoidal rule approximates the integral by dividing the interval [1, 5] into [tex]\( n = 8 \)[/tex] equally spaced subintervals and summing up the areas of trapezoids under the curve. Here, the interval is divided by points [tex]\( x_i \)[/tex] from [tex]\( a = 1 \)[/tex] to [tex]\( b = 5 \)[/tex] with [tex]\( x_0, x_1, \ldots, x_8 \)[/tex]. The width of each subinterval is
[tex]\[ h = \frac{b - a}{n} = \frac{5 - 1}{8} = 0.5 \][/tex]
The formula for the trapezoidal approximation is:
[tex]\[ \int_a^b f(x) \, dx \approx \frac{h}{2} \left[ f(x_0) + 2 \sum_{i=1}^{n-1} f(x_i) + f(x_n) \right] \][/tex]
Plugging in our function [tex]\( f(x) = \frac{2 \cos (3 x)}{x} \)[/tex] and evaluating it at the points [tex]\( x_0, x_1, \ldots, x_8 \)[/tex]:
[tex]\[ \text{Trapezoidal result} \approx -0.18916600155903196 \][/tex]
### (b) Midpoint Rule
The midpoint rule approximates the integral by dividing the interval into [tex]\( n = 8 \)[/tex] subintervals and using the midpoint of each subinterval to approximate the function:
The width of each subinterval is again [tex]\( h = 0.5 \)[/tex]. The midpoint of each subinterval is
[tex]\[ x_i = a + \left( i + \frac{1}{2} \right)h \][/tex]
for [tex]\( i = 0, 1, \ldots, n-1 \)[/tex]. The midpoint rule formula is:
[tex]\[ \int_a^b f(x) \, dx \approx h \sum_{i=0}^{n-1} f(x_i) \][/tex]
Evaluating each midpoint and the function [tex]\( f(x) \)[/tex] at these points:
[tex]\[ \text{Midpoint result} \approx -0.12401899176539463 \][/tex]
### (c) Simpson's Rule
Simpson’s rule is more accurate than the trapezoidal rule or the midpoint rule under certain conditions. It requires an even number of subintervals (which we have):
[tex]\[ \int_a^b f(x) \, dx \approx \frac{h}{3} \left[ f(x_0) + 4 \sum_{i=1, \, \text{odd}}^{n-1} f(x_i) + 2 \sum_{i=2, \, \text{even}}^{n-2} f(x_i) + f(x_n) \right] \][/tex]
The subinterval width [tex]\( h \)[/tex] remains [tex]\( 0.5 \)[/tex]. Simpson's rule interpretation for our function yields:
[tex]\[ \text{Simpson's result} \approx -0.14670221666727806 \][/tex]
In summary, the results for the integral [tex]\( \int_1^5 \frac{2 \cos (3 x)}{x} \, dx \)[/tex] using [tex]\( n = 8 \)[/tex] are:
(a) Trapezoidal rule: [tex]\( -0.18916600155903196 \)[/tex]
(b) Midpoint rule: [tex]\( -0.12401899176539463 \)[/tex]
(c) Simpson's rule: [tex]\( -0.14670221666727806 \)[/tex]
### (a) Trapezoidal Rule
The trapezoidal rule approximates the integral by dividing the interval [1, 5] into [tex]\( n = 8 \)[/tex] equally spaced subintervals and summing up the areas of trapezoids under the curve. Here, the interval is divided by points [tex]\( x_i \)[/tex] from [tex]\( a = 1 \)[/tex] to [tex]\( b = 5 \)[/tex] with [tex]\( x_0, x_1, \ldots, x_8 \)[/tex]. The width of each subinterval is
[tex]\[ h = \frac{b - a}{n} = \frac{5 - 1}{8} = 0.5 \][/tex]
The formula for the trapezoidal approximation is:
[tex]\[ \int_a^b f(x) \, dx \approx \frac{h}{2} \left[ f(x_0) + 2 \sum_{i=1}^{n-1} f(x_i) + f(x_n) \right] \][/tex]
Plugging in our function [tex]\( f(x) = \frac{2 \cos (3 x)}{x} \)[/tex] and evaluating it at the points [tex]\( x_0, x_1, \ldots, x_8 \)[/tex]:
[tex]\[ \text{Trapezoidal result} \approx -0.18916600155903196 \][/tex]
### (b) Midpoint Rule
The midpoint rule approximates the integral by dividing the interval into [tex]\( n = 8 \)[/tex] subintervals and using the midpoint of each subinterval to approximate the function:
The width of each subinterval is again [tex]\( h = 0.5 \)[/tex]. The midpoint of each subinterval is
[tex]\[ x_i = a + \left( i + \frac{1}{2} \right)h \][/tex]
for [tex]\( i = 0, 1, \ldots, n-1 \)[/tex]. The midpoint rule formula is:
[tex]\[ \int_a^b f(x) \, dx \approx h \sum_{i=0}^{n-1} f(x_i) \][/tex]
Evaluating each midpoint and the function [tex]\( f(x) \)[/tex] at these points:
[tex]\[ \text{Midpoint result} \approx -0.12401899176539463 \][/tex]
### (c) Simpson's Rule
Simpson’s rule is more accurate than the trapezoidal rule or the midpoint rule under certain conditions. It requires an even number of subintervals (which we have):
[tex]\[ \int_a^b f(x) \, dx \approx \frac{h}{3} \left[ f(x_0) + 4 \sum_{i=1, \, \text{odd}}^{n-1} f(x_i) + 2 \sum_{i=2, \, \text{even}}^{n-2} f(x_i) + f(x_n) \right] \][/tex]
The subinterval width [tex]\( h \)[/tex] remains [tex]\( 0.5 \)[/tex]. Simpson's rule interpretation for our function yields:
[tex]\[ \text{Simpson's result} \approx -0.14670221666727806 \][/tex]
In summary, the results for the integral [tex]\( \int_1^5 \frac{2 \cos (3 x)}{x} \, dx \)[/tex] using [tex]\( n = 8 \)[/tex] are:
(a) Trapezoidal rule: [tex]\( -0.18916600155903196 \)[/tex]
(b) Midpoint rule: [tex]\( -0.12401899176539463 \)[/tex]
(c) Simpson's rule: [tex]\( -0.14670221666727806 \)[/tex]
We appreciate your time. Please come back anytime for the latest information and answers to your questions. Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Thank you for visiting Westonci.ca, your go-to source for reliable answers. Come back soon for more expert insights.