Discover the answers to your questions at Westonci.ca, where experts share their knowledge and insights with you. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform.
Sagot :
To understand the features of the function [tex]\( g(x) = f(x + 4) + 8 \)[/tex] given the provided information about [tex]\( g \)[/tex], we need to reverse the transformations and determine the corresponding features of the original function [tex]\( f(x) \)[/tex].
Given:
1. [tex]\( g(x) \)[/tex] has a [tex]\( y \)[/tex]-intercept at [tex]\( (0,10) \)[/tex].
2. The domain of [tex]\( g(x) \)[/tex] is [tex]\( (4, \infty) \)[/tex].
3. The range of [tex]\( g(x) \)[/tex] is [tex]\( (8, \infty) \)[/tex].
4. [tex]\( g(x) \)[/tex] has a vertical asymptote at [tex]\( x = -4 \)[/tex].
5. [tex]\( g(x) \)[/tex] has an [tex]\( x \)[/tex]-intercept at [tex]\( (1, 0) \)[/tex].
### Step-by-Step Solution:
#### 1. Y-Intercept of [tex]\( f(x) \)[/tex]:
The [tex]\( y \)[/tex]-intercept of [tex]\( g(x) \)[/tex] occurs at [tex]\( (0,10) \)[/tex]. For [tex]\( g(0) = f(4) + 8 = 10 \)[/tex].
Therefore, [tex]\( f(4)=10-8=2 \)[/tex].
So, the [tex]\( y \)[/tex]-intercept of [tex]\( f(x) \)[/tex] is at [tex]\( (0,2) \)[/tex].
#### 2. Domain of [tex]\( f(x) \)[/tex]:
The domain of [tex]\( g(x) \)[/tex] is [tex]\( (4, \infty) \)[/tex].
Since [tex]\( g(x) = f(x + 4) + 8 \)[/tex], [tex]\( x + 4 \)[/tex] must be within the domain of [tex]\( f \)[/tex] for all [tex]\( x \ge 4 \)[/tex].
Therefore, the domain of [tex]\( f(x) \)[/tex] is [tex]\( (0, \infty) \)[/tex].
#### 3. Range of [tex]\( f(x) \)[/tex]:
The range of [tex]\( g(x) \)[/tex] is [tex]\( (8, \infty) \)[/tex].
Since [tex]\( g(x) = f(x + 4) + 8 \)[/tex], the range of [tex]\( f(x) \)[/tex] must be [tex]\( (0, \infty) \)[/tex]. This is because [tex]\( f(x + 4) = g(x) - 8 \)[/tex], thus the range of [tex]\( f(x) \)[/tex] results in [tex]\( [g(x) - 8]\)[/tex] which translates [tex]\( 8 - 8 = 0 \)[/tex] shifting the range down by 8.
#### 4. Vertical Asymptote of [tex]\( f(x) \)[/tex]:
The vertical asymptote of [tex]\( g(x) \)[/tex] is at [tex]\( x = -4 \)[/tex].
Since [tex]\( g(x) = f(x + 4) + 8 \)[/tex], this corresponds to the vertical asymptote of [tex]\( f(z) \)[/tex] being [tex]\( z = x + 4 \)[/tex]. Therefore, [tex]\( x + 4 = -4 \implies x = -8 \)[/tex].
So, the vertical asymptote of [tex]\( f(x) \)[/tex] is at [tex]\( x = -8 \)[/tex].
#### 5. X-Intercept of [tex]\( f(x) \)[/tex]:
The [tex]\( x \)[/tex]-intercept of [tex]\( g(x) \)[/tex] occurs at [tex]\( (1,0) \)[/tex].
Therefore, [tex]\( g(1) = f(5) + 8 = 0 \)[/tex].
Thus, [tex]\( f(5) = -8 \)[/tex].
The [tex]\( x \)[/tex]-intercept of [tex]\( f(x) \)[/tex] is at [tex]\( (5 - 4) = (1-4, 0-8) = (-3, -8) \)[/tex].
### Summary:
- [tex]\( y \)[/tex]-intercept of [tex]\( f(x) \)[/tex]: [tex]\( (0, 2) \)[/tex]
- Domain of [tex]\( f(x) \)[/tex]: [tex]\( (0, \infty) \)[/tex]
- Range of [tex]\( f(x) \)[/tex]: [tex]\( (0, \infty) \)[/tex]
- Vertical asymptote of [tex]\( f(x) \)[/tex]: [tex]\( x = -8 \)[/tex]
- [tex]\( x \)[/tex]-intercept of [tex]\( f(x) \)[/tex]: [tex]\( (-3, -8) \)[/tex]
So, the features of the function [tex]\( f \)[/tex] are clearly determined through these transformations and relationships.
Given:
1. [tex]\( g(x) \)[/tex] has a [tex]\( y \)[/tex]-intercept at [tex]\( (0,10) \)[/tex].
2. The domain of [tex]\( g(x) \)[/tex] is [tex]\( (4, \infty) \)[/tex].
3. The range of [tex]\( g(x) \)[/tex] is [tex]\( (8, \infty) \)[/tex].
4. [tex]\( g(x) \)[/tex] has a vertical asymptote at [tex]\( x = -4 \)[/tex].
5. [tex]\( g(x) \)[/tex] has an [tex]\( x \)[/tex]-intercept at [tex]\( (1, 0) \)[/tex].
### Step-by-Step Solution:
#### 1. Y-Intercept of [tex]\( f(x) \)[/tex]:
The [tex]\( y \)[/tex]-intercept of [tex]\( g(x) \)[/tex] occurs at [tex]\( (0,10) \)[/tex]. For [tex]\( g(0) = f(4) + 8 = 10 \)[/tex].
Therefore, [tex]\( f(4)=10-8=2 \)[/tex].
So, the [tex]\( y \)[/tex]-intercept of [tex]\( f(x) \)[/tex] is at [tex]\( (0,2) \)[/tex].
#### 2. Domain of [tex]\( f(x) \)[/tex]:
The domain of [tex]\( g(x) \)[/tex] is [tex]\( (4, \infty) \)[/tex].
Since [tex]\( g(x) = f(x + 4) + 8 \)[/tex], [tex]\( x + 4 \)[/tex] must be within the domain of [tex]\( f \)[/tex] for all [tex]\( x \ge 4 \)[/tex].
Therefore, the domain of [tex]\( f(x) \)[/tex] is [tex]\( (0, \infty) \)[/tex].
#### 3. Range of [tex]\( f(x) \)[/tex]:
The range of [tex]\( g(x) \)[/tex] is [tex]\( (8, \infty) \)[/tex].
Since [tex]\( g(x) = f(x + 4) + 8 \)[/tex], the range of [tex]\( f(x) \)[/tex] must be [tex]\( (0, \infty) \)[/tex]. This is because [tex]\( f(x + 4) = g(x) - 8 \)[/tex], thus the range of [tex]\( f(x) \)[/tex] results in [tex]\( [g(x) - 8]\)[/tex] which translates [tex]\( 8 - 8 = 0 \)[/tex] shifting the range down by 8.
#### 4. Vertical Asymptote of [tex]\( f(x) \)[/tex]:
The vertical asymptote of [tex]\( g(x) \)[/tex] is at [tex]\( x = -4 \)[/tex].
Since [tex]\( g(x) = f(x + 4) + 8 \)[/tex], this corresponds to the vertical asymptote of [tex]\( f(z) \)[/tex] being [tex]\( z = x + 4 \)[/tex]. Therefore, [tex]\( x + 4 = -4 \implies x = -8 \)[/tex].
So, the vertical asymptote of [tex]\( f(x) \)[/tex] is at [tex]\( x = -8 \)[/tex].
#### 5. X-Intercept of [tex]\( f(x) \)[/tex]:
The [tex]\( x \)[/tex]-intercept of [tex]\( g(x) \)[/tex] occurs at [tex]\( (1,0) \)[/tex].
Therefore, [tex]\( g(1) = f(5) + 8 = 0 \)[/tex].
Thus, [tex]\( f(5) = -8 \)[/tex].
The [tex]\( x \)[/tex]-intercept of [tex]\( f(x) \)[/tex] is at [tex]\( (5 - 4) = (1-4, 0-8) = (-3, -8) \)[/tex].
### Summary:
- [tex]\( y \)[/tex]-intercept of [tex]\( f(x) \)[/tex]: [tex]\( (0, 2) \)[/tex]
- Domain of [tex]\( f(x) \)[/tex]: [tex]\( (0, \infty) \)[/tex]
- Range of [tex]\( f(x) \)[/tex]: [tex]\( (0, \infty) \)[/tex]
- Vertical asymptote of [tex]\( f(x) \)[/tex]: [tex]\( x = -8 \)[/tex]
- [tex]\( x \)[/tex]-intercept of [tex]\( f(x) \)[/tex]: [tex]\( (-3, -8) \)[/tex]
So, the features of the function [tex]\( f \)[/tex] are clearly determined through these transformations and relationships.
We hope this information was helpful. Feel free to return anytime for more answers to your questions and concerns. Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. Westonci.ca is here to provide the answers you seek. Return often for more expert solutions.