Looking for answers? Westonci.ca is your go-to Q&A platform, offering quick, trustworthy responses from a community of experts. Join our Q&A platform to get precise answers from experts in diverse fields and enhance your understanding. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.
Sagot :
To determine which planet allows the space probe to achieve the highest speed after falling 50 meters, we will use the kinematic equation for velocity under constant acceleration:
[tex]\[ v^2 = u^2 + 2as \][/tex]
Here,
- [tex]\( v \)[/tex] is the final velocity,
- [tex]\( u \)[/tex] is the initial velocity (which is 0 in this case since the probe starts from rest),
- [tex]\( a \)[/tex] is the acceleration due to gravity on the respective planet,
- [tex]\( s \)[/tex] is the distance fallen (50 meters).
Given that [tex]\( u = 0 \)[/tex], the equation simplifies to:
[tex]\[ v^2 = 2as \][/tex]
Thus,
[tex]\[ v = \sqrt{2as} \][/tex]
We will use the given gravitational accelerations for each planet to find the final velocities:
1. Venus:
- Acceleration due to gravity, [tex]\( a = 8.9 \, m/s^2 \)[/tex]
- Distance fallen, [tex]\( s = 50 \, m \)[/tex]
[tex]\[ v = \sqrt{2 \cdot 8.9 \cdot 50} \][/tex]
[tex]\[ v \approx 29.83 \, m/s \][/tex]
2. Earth:
- Acceleration due to gravity, [tex]\( a = 9.8 \, m/s^2 \)[/tex]
- Distance fallen, [tex]\( s = 50 \, m \)[/tex]
[tex]\[ v = \sqrt{2 \cdot 9.8 \cdot 50} \][/tex]
[tex]\[ v \approx 31.30 \, m/s \][/tex]
3. Uranus:
- Acceleration due to gravity, [tex]\( a = 8.7 \, m/s^2 \)[/tex]
- Distance fallen, [tex]\( s = 50 \, m \)[/tex]
[tex]\[ v = \sqrt{2 \cdot 8.7 \cdot 50} \][/tex]
[tex]\[ v \approx 29.50 \, m/s \][/tex]
4. Neptune:
- Acceleration due to gravity, [tex]\( a = 11.0 \, m/s^2 \)[/tex]
- Distance fallen, [tex]\( s = 50 \, m \)[/tex]
[tex]\[ v = \sqrt{2 \cdot 11.0 \cdot 50} \][/tex]
[tex]\[ v \approx 33.17 \, m/s \][/tex]
5. Saturn:
- Acceleration due to gravity, [tex]\( a = 9.0 \, m/s^2 \)[/tex]
- Distance fallen, [tex]\( s = 50 \, m \)[/tex]
[tex]\[ v = \sqrt{2 \cdot 9.0 \cdot 50} \][/tex]
[tex]\[ v \approx 30.00 \, m/s \][/tex]
By comparing the final velocities, we see that the highest final velocity is achieved on Neptune, at approximately [tex]\( 33.17 \, m/s \)[/tex].
Therefore, the correct answer is:
D. Neptune
[tex]\[ v^2 = u^2 + 2as \][/tex]
Here,
- [tex]\( v \)[/tex] is the final velocity,
- [tex]\( u \)[/tex] is the initial velocity (which is 0 in this case since the probe starts from rest),
- [tex]\( a \)[/tex] is the acceleration due to gravity on the respective planet,
- [tex]\( s \)[/tex] is the distance fallen (50 meters).
Given that [tex]\( u = 0 \)[/tex], the equation simplifies to:
[tex]\[ v^2 = 2as \][/tex]
Thus,
[tex]\[ v = \sqrt{2as} \][/tex]
We will use the given gravitational accelerations for each planet to find the final velocities:
1. Venus:
- Acceleration due to gravity, [tex]\( a = 8.9 \, m/s^2 \)[/tex]
- Distance fallen, [tex]\( s = 50 \, m \)[/tex]
[tex]\[ v = \sqrt{2 \cdot 8.9 \cdot 50} \][/tex]
[tex]\[ v \approx 29.83 \, m/s \][/tex]
2. Earth:
- Acceleration due to gravity, [tex]\( a = 9.8 \, m/s^2 \)[/tex]
- Distance fallen, [tex]\( s = 50 \, m \)[/tex]
[tex]\[ v = \sqrt{2 \cdot 9.8 \cdot 50} \][/tex]
[tex]\[ v \approx 31.30 \, m/s \][/tex]
3. Uranus:
- Acceleration due to gravity, [tex]\( a = 8.7 \, m/s^2 \)[/tex]
- Distance fallen, [tex]\( s = 50 \, m \)[/tex]
[tex]\[ v = \sqrt{2 \cdot 8.7 \cdot 50} \][/tex]
[tex]\[ v \approx 29.50 \, m/s \][/tex]
4. Neptune:
- Acceleration due to gravity, [tex]\( a = 11.0 \, m/s^2 \)[/tex]
- Distance fallen, [tex]\( s = 50 \, m \)[/tex]
[tex]\[ v = \sqrt{2 \cdot 11.0 \cdot 50} \][/tex]
[tex]\[ v \approx 33.17 \, m/s \][/tex]
5. Saturn:
- Acceleration due to gravity, [tex]\( a = 9.0 \, m/s^2 \)[/tex]
- Distance fallen, [tex]\( s = 50 \, m \)[/tex]
[tex]\[ v = \sqrt{2 \cdot 9.0 \cdot 50} \][/tex]
[tex]\[ v \approx 30.00 \, m/s \][/tex]
By comparing the final velocities, we see that the highest final velocity is achieved on Neptune, at approximately [tex]\( 33.17 \, m/s \)[/tex].
Therefore, the correct answer is:
D. Neptune
We hope this was helpful. Please come back whenever you need more information or answers to your queries. We appreciate your time. Please revisit us for more reliable answers to any questions you may have. Westonci.ca is committed to providing accurate answers. Come back soon for more trustworthy information.