Get the answers you need at Westonci.ca, where our expert community is always ready to help with accurate information. Our Q&A platform provides quick and trustworthy answers to your questions from experienced professionals in different areas of expertise. Join our platform to connect with experts ready to provide precise answers to your questions in different areas.
Sagot :
To simplify the radical expression [tex]\( \sqrt[4]{48 x^3} \)[/tex] in rational exponent form, follow these steps:
1. Understand the Expression:
The expression [tex]\( \sqrt[4]{48 x^3} \)[/tex] can be rewritten using rational exponents. The fourth root of any number or expression is the same as raising that number or expression to the power of [tex]\( \frac{1}{4} \)[/tex]. Therefore,
[tex]\[ \sqrt[4]{48 x^3} = (48 x^3)^{\frac{1}{4}} \][/tex]
2. Factorize the Constant:
Break 48 into its prime factors. Since [tex]\( 48 = 2^4 \times 3 \)[/tex], the expression can be rewritten as:
[tex]\[ (48 x^3)^{\frac{1}{4}} = (2^4 \times 3 \times x^3)^{\frac{1}{4}} \][/tex]
3. Distribute the Exponent:
Apply the exponent [tex]\( \frac{1}{4} \)[/tex] to each factor inside the parentheses individually:
[tex]\[ (2^4 \times 3 \times x^3)^{\frac{1}{4}} = (2^4)^{\frac{1}{4}} \times 3^{\frac{1}{4}} \times (x^3)^{\frac{1}{4}} \][/tex]
4. Simplify Each Term:
- For [tex]\( (2^4)^{\frac{1}{4}} \)[/tex], apply the power of a power rule: [tex]\( (a^m)^n = a^{m \cdot n} \)[/tex]:
[tex]\[ (2^4)^{\frac{1}{4}} = 2^{4 \cdot \frac{1}{4}} = 2^1 = 2 \][/tex]
- The term [tex]\( 3^{\frac{1}{4}} \)[/tex] remains as is since it is already in simplified form.
- For [tex]\( (x^3)^{\frac{1}{4}} \)[/tex], again apply the power of a power rule:
[tex]\[ (x^3)^{\frac{1}{4}} = x^{3 \cdot \frac{1}{4}} = x^{\frac{3}{4}} \][/tex]
5. Combine the Simplified Terms:
Put all the simplified terms together:
[tex]\[ 2 \times 3^{\frac{1}{4}} \times x^{\frac{3}{4}} \][/tex]
6. Write the Final Simplified Expression:
The simplified rational exponent form of [tex]\( \sqrt[4]{48 x^3} \)[/tex] is:
[tex]\[ 2 \times 3^{\frac{1}{4}} \times x^{\frac{3}{4}} \][/tex]
Answer:
[tex]\[ 2 \times 3^{\frac{1}{4}} \times x^{\frac{3}{4}} \][/tex]
1. Understand the Expression:
The expression [tex]\( \sqrt[4]{48 x^3} \)[/tex] can be rewritten using rational exponents. The fourth root of any number or expression is the same as raising that number or expression to the power of [tex]\( \frac{1}{4} \)[/tex]. Therefore,
[tex]\[ \sqrt[4]{48 x^3} = (48 x^3)^{\frac{1}{4}} \][/tex]
2. Factorize the Constant:
Break 48 into its prime factors. Since [tex]\( 48 = 2^4 \times 3 \)[/tex], the expression can be rewritten as:
[tex]\[ (48 x^3)^{\frac{1}{4}} = (2^4 \times 3 \times x^3)^{\frac{1}{4}} \][/tex]
3. Distribute the Exponent:
Apply the exponent [tex]\( \frac{1}{4} \)[/tex] to each factor inside the parentheses individually:
[tex]\[ (2^4 \times 3 \times x^3)^{\frac{1}{4}} = (2^4)^{\frac{1}{4}} \times 3^{\frac{1}{4}} \times (x^3)^{\frac{1}{4}} \][/tex]
4. Simplify Each Term:
- For [tex]\( (2^4)^{\frac{1}{4}} \)[/tex], apply the power of a power rule: [tex]\( (a^m)^n = a^{m \cdot n} \)[/tex]:
[tex]\[ (2^4)^{\frac{1}{4}} = 2^{4 \cdot \frac{1}{4}} = 2^1 = 2 \][/tex]
- The term [tex]\( 3^{\frac{1}{4}} \)[/tex] remains as is since it is already in simplified form.
- For [tex]\( (x^3)^{\frac{1}{4}} \)[/tex], again apply the power of a power rule:
[tex]\[ (x^3)^{\frac{1}{4}} = x^{3 \cdot \frac{1}{4}} = x^{\frac{3}{4}} \][/tex]
5. Combine the Simplified Terms:
Put all the simplified terms together:
[tex]\[ 2 \times 3^{\frac{1}{4}} \times x^{\frac{3}{4}} \][/tex]
6. Write the Final Simplified Expression:
The simplified rational exponent form of [tex]\( \sqrt[4]{48 x^3} \)[/tex] is:
[tex]\[ 2 \times 3^{\frac{1}{4}} \times x^{\frac{3}{4}} \][/tex]
Answer:
[tex]\[ 2 \times 3^{\frac{1}{4}} \times x^{\frac{3}{4}} \][/tex]
Thank you for your visit. We are dedicated to helping you find the information you need, whenever you need it. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Thank you for choosing Westonci.ca as your information source. We look forward to your next visit.