Explore Westonci.ca, the premier Q&A site that helps you find precise answers to your questions, no matter the topic. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform.
Sagot :
To simplify the radical expression [tex]\( \sqrt[4]{48 x^3} \)[/tex] in rational exponent form, follow these steps:
1. Understand the Expression:
The expression [tex]\( \sqrt[4]{48 x^3} \)[/tex] can be rewritten using rational exponents. The fourth root of any number or expression is the same as raising that number or expression to the power of [tex]\( \frac{1}{4} \)[/tex]. Therefore,
[tex]\[ \sqrt[4]{48 x^3} = (48 x^3)^{\frac{1}{4}} \][/tex]
2. Factorize the Constant:
Break 48 into its prime factors. Since [tex]\( 48 = 2^4 \times 3 \)[/tex], the expression can be rewritten as:
[tex]\[ (48 x^3)^{\frac{1}{4}} = (2^4 \times 3 \times x^3)^{\frac{1}{4}} \][/tex]
3. Distribute the Exponent:
Apply the exponent [tex]\( \frac{1}{4} \)[/tex] to each factor inside the parentheses individually:
[tex]\[ (2^4 \times 3 \times x^3)^{\frac{1}{4}} = (2^4)^{\frac{1}{4}} \times 3^{\frac{1}{4}} \times (x^3)^{\frac{1}{4}} \][/tex]
4. Simplify Each Term:
- For [tex]\( (2^4)^{\frac{1}{4}} \)[/tex], apply the power of a power rule: [tex]\( (a^m)^n = a^{m \cdot n} \)[/tex]:
[tex]\[ (2^4)^{\frac{1}{4}} = 2^{4 \cdot \frac{1}{4}} = 2^1 = 2 \][/tex]
- The term [tex]\( 3^{\frac{1}{4}} \)[/tex] remains as is since it is already in simplified form.
- For [tex]\( (x^3)^{\frac{1}{4}} \)[/tex], again apply the power of a power rule:
[tex]\[ (x^3)^{\frac{1}{4}} = x^{3 \cdot \frac{1}{4}} = x^{\frac{3}{4}} \][/tex]
5. Combine the Simplified Terms:
Put all the simplified terms together:
[tex]\[ 2 \times 3^{\frac{1}{4}} \times x^{\frac{3}{4}} \][/tex]
6. Write the Final Simplified Expression:
The simplified rational exponent form of [tex]\( \sqrt[4]{48 x^3} \)[/tex] is:
[tex]\[ 2 \times 3^{\frac{1}{4}} \times x^{\frac{3}{4}} \][/tex]
Answer:
[tex]\[ 2 \times 3^{\frac{1}{4}} \times x^{\frac{3}{4}} \][/tex]
1. Understand the Expression:
The expression [tex]\( \sqrt[4]{48 x^3} \)[/tex] can be rewritten using rational exponents. The fourth root of any number or expression is the same as raising that number or expression to the power of [tex]\( \frac{1}{4} \)[/tex]. Therefore,
[tex]\[ \sqrt[4]{48 x^3} = (48 x^3)^{\frac{1}{4}} \][/tex]
2. Factorize the Constant:
Break 48 into its prime factors. Since [tex]\( 48 = 2^4 \times 3 \)[/tex], the expression can be rewritten as:
[tex]\[ (48 x^3)^{\frac{1}{4}} = (2^4 \times 3 \times x^3)^{\frac{1}{4}} \][/tex]
3. Distribute the Exponent:
Apply the exponent [tex]\( \frac{1}{4} \)[/tex] to each factor inside the parentheses individually:
[tex]\[ (2^4 \times 3 \times x^3)^{\frac{1}{4}} = (2^4)^{\frac{1}{4}} \times 3^{\frac{1}{4}} \times (x^3)^{\frac{1}{4}} \][/tex]
4. Simplify Each Term:
- For [tex]\( (2^4)^{\frac{1}{4}} \)[/tex], apply the power of a power rule: [tex]\( (a^m)^n = a^{m \cdot n} \)[/tex]:
[tex]\[ (2^4)^{\frac{1}{4}} = 2^{4 \cdot \frac{1}{4}} = 2^1 = 2 \][/tex]
- The term [tex]\( 3^{\frac{1}{4}} \)[/tex] remains as is since it is already in simplified form.
- For [tex]\( (x^3)^{\frac{1}{4}} \)[/tex], again apply the power of a power rule:
[tex]\[ (x^3)^{\frac{1}{4}} = x^{3 \cdot \frac{1}{4}} = x^{\frac{3}{4}} \][/tex]
5. Combine the Simplified Terms:
Put all the simplified terms together:
[tex]\[ 2 \times 3^{\frac{1}{4}} \times x^{\frac{3}{4}} \][/tex]
6. Write the Final Simplified Expression:
The simplified rational exponent form of [tex]\( \sqrt[4]{48 x^3} \)[/tex] is:
[tex]\[ 2 \times 3^{\frac{1}{4}} \times x^{\frac{3}{4}} \][/tex]
Answer:
[tex]\[ 2 \times 3^{\frac{1}{4}} \times x^{\frac{3}{4}} \][/tex]
Thanks for using our platform. We're always here to provide accurate and up-to-date answers to all your queries. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Thank you for visiting Westonci.ca. Stay informed by coming back for more detailed answers.