Looking for answers? Westonci.ca is your go-to Q&A platform, offering quick, trustworthy responses from a community of experts. Explore thousands of questions and answers from a knowledgeable community of experts on our user-friendly platform. Join our platform to connect with experts ready to provide precise answers to your questions in different areas.
Sagot :
To determine the orbital period of Neptune, we can use Kepler's third law, which relates the orbital period of a planet to its semi-major axis (the distance from the Sun in this context):
[tex]\[ T^2 = \frac{4\pi^2 r^3}{GM_{\text{sun}}} \][/tex]
where:
- [tex]\( T \)[/tex] is the orbital period of the planet,
- [tex]\( r \)[/tex] is the average distance from the planet to the Sun (in meters),
- [tex]\( G \)[/tex] is the gravitational constant [tex]\((6.67430 \times 10^{-11} \, m^3 kg^{-1} s^{-2})\)[/tex],
- [tex]\( M_{\text{sun}} \)[/tex] is the mass of the Sun [tex]\((2 \times 10^{30} \, kg)\)[/tex].
Firstly, we need to convert the distance from Astronomical Units (AU) to meters:
[tex]\[ 1 \, \text{AU} = 1.496 \times 10^{11} \, \text{m} \][/tex]
[tex]\[ \text{distance}_{\text{Neptune-Sun}} = 30 \, \text{AU} \times 1.496 \times 10^{11} \, \text{m/AU} = 4.488 \times 10^{12} \, \text{m} \][/tex]
Next, we plug in the values into Kepler's third law to find [tex]\( T \)[/tex]:
[tex]\[ T^2 = \frac{4 \pi^2 (4.488 \times 10^{12} \, \text{m})^3}{(6.67430 \times 10^{-11} \, \text{m}^3 \text{kg}^{-1} \text{s}^{-2})(2 \times 10^{30} \,\text{kg})} \][/tex]
Calculating the numerator:
[tex]\[ 4 \pi^2 (4.488 \times 10^{12} \, \text{m})^3 \approx 2.67077 \times 10^{38} \, \text{m}^3 \][/tex]
Calculating the denominator:
[tex]\[ (6.67430 \times 10^{-11} \, \text{m}^3 \text{kg}^{-1} \text{s}^{-2})(2 \times 10^{30} \, \text{kg}) = 1.33486 \times 10^{20} \, \text{m}^3 \text{s}^{-2} \][/tex]
Combining these:
[tex]\[ T^2 = \frac{2.67077 \times 10^{38}}{1.33486 \times 10^{20}} \approx 2.6735 \times 10^{19} \][/tex]
[tex]\[ T \approx \sqrt{2.6735 \times 10^{19}} \approx 5.1706 \times 10^{9} \, \text{s} \][/tex]
Finally, we convert the orbital period from seconds to Earth years:
[tex]\[ 1 \, \text{year} = 365.25 \, \text{days} \times 24 \, \text{hours/day} \times 60 \, \text{minutes/hour} \times 60 \, \text{seconds/minute} = 3.15576 \times 10^{7} \, \text{s/year} \][/tex]
[tex]\[ T_{\text{years}} = \frac{5.1706 \times 10^{9} \, \text{s}}{3.15576 \times 10^{7} \, \text{s/year}} \approx 163.85 \, \text{years} \][/tex]
Therefore, the orbital period of Neptune is approximately:
[tex]\[ 164 \, \text{Earth years} \][/tex]
So the correct answer is:
[tex]\[ \boxed{164 \, \text{Earth years}} \][/tex]
[tex]\[ T^2 = \frac{4\pi^2 r^3}{GM_{\text{sun}}} \][/tex]
where:
- [tex]\( T \)[/tex] is the orbital period of the planet,
- [tex]\( r \)[/tex] is the average distance from the planet to the Sun (in meters),
- [tex]\( G \)[/tex] is the gravitational constant [tex]\((6.67430 \times 10^{-11} \, m^3 kg^{-1} s^{-2})\)[/tex],
- [tex]\( M_{\text{sun}} \)[/tex] is the mass of the Sun [tex]\((2 \times 10^{30} \, kg)\)[/tex].
Firstly, we need to convert the distance from Astronomical Units (AU) to meters:
[tex]\[ 1 \, \text{AU} = 1.496 \times 10^{11} \, \text{m} \][/tex]
[tex]\[ \text{distance}_{\text{Neptune-Sun}} = 30 \, \text{AU} \times 1.496 \times 10^{11} \, \text{m/AU} = 4.488 \times 10^{12} \, \text{m} \][/tex]
Next, we plug in the values into Kepler's third law to find [tex]\( T \)[/tex]:
[tex]\[ T^2 = \frac{4 \pi^2 (4.488 \times 10^{12} \, \text{m})^3}{(6.67430 \times 10^{-11} \, \text{m}^3 \text{kg}^{-1} \text{s}^{-2})(2 \times 10^{30} \,\text{kg})} \][/tex]
Calculating the numerator:
[tex]\[ 4 \pi^2 (4.488 \times 10^{12} \, \text{m})^3 \approx 2.67077 \times 10^{38} \, \text{m}^3 \][/tex]
Calculating the denominator:
[tex]\[ (6.67430 \times 10^{-11} \, \text{m}^3 \text{kg}^{-1} \text{s}^{-2})(2 \times 10^{30} \, \text{kg}) = 1.33486 \times 10^{20} \, \text{m}^3 \text{s}^{-2} \][/tex]
Combining these:
[tex]\[ T^2 = \frac{2.67077 \times 10^{38}}{1.33486 \times 10^{20}} \approx 2.6735 \times 10^{19} \][/tex]
[tex]\[ T \approx \sqrt{2.6735 \times 10^{19}} \approx 5.1706 \times 10^{9} \, \text{s} \][/tex]
Finally, we convert the orbital period from seconds to Earth years:
[tex]\[ 1 \, \text{year} = 365.25 \, \text{days} \times 24 \, \text{hours/day} \times 60 \, \text{minutes/hour} \times 60 \, \text{seconds/minute} = 3.15576 \times 10^{7} \, \text{s/year} \][/tex]
[tex]\[ T_{\text{years}} = \frac{5.1706 \times 10^{9} \, \text{s}}{3.15576 \times 10^{7} \, \text{s/year}} \approx 163.85 \, \text{years} \][/tex]
Therefore, the orbital period of Neptune is approximately:
[tex]\[ 164 \, \text{Earth years} \][/tex]
So the correct answer is:
[tex]\[ \boxed{164 \, \text{Earth years}} \][/tex]
Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. Get the answers you need at Westonci.ca. Stay informed by returning for our latest expert advice.