At Westonci.ca, we provide clear, reliable answers to all your questions. Join our vibrant community and get the solutions you need. Our platform provides a seamless experience for finding reliable answers from a knowledgeable network of professionals. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform.
Sagot :
To determine the orbital period of Neptune, we can use Kepler's third law, which relates the orbital period of a planet to its semi-major axis (the distance from the Sun in this context):
[tex]\[ T^2 = \frac{4\pi^2 r^3}{GM_{\text{sun}}} \][/tex]
where:
- [tex]\( T \)[/tex] is the orbital period of the planet,
- [tex]\( r \)[/tex] is the average distance from the planet to the Sun (in meters),
- [tex]\( G \)[/tex] is the gravitational constant [tex]\((6.67430 \times 10^{-11} \, m^3 kg^{-1} s^{-2})\)[/tex],
- [tex]\( M_{\text{sun}} \)[/tex] is the mass of the Sun [tex]\((2 \times 10^{30} \, kg)\)[/tex].
Firstly, we need to convert the distance from Astronomical Units (AU) to meters:
[tex]\[ 1 \, \text{AU} = 1.496 \times 10^{11} \, \text{m} \][/tex]
[tex]\[ \text{distance}_{\text{Neptune-Sun}} = 30 \, \text{AU} \times 1.496 \times 10^{11} \, \text{m/AU} = 4.488 \times 10^{12} \, \text{m} \][/tex]
Next, we plug in the values into Kepler's third law to find [tex]\( T \)[/tex]:
[tex]\[ T^2 = \frac{4 \pi^2 (4.488 \times 10^{12} \, \text{m})^3}{(6.67430 \times 10^{-11} \, \text{m}^3 \text{kg}^{-1} \text{s}^{-2})(2 \times 10^{30} \,\text{kg})} \][/tex]
Calculating the numerator:
[tex]\[ 4 \pi^2 (4.488 \times 10^{12} \, \text{m})^3 \approx 2.67077 \times 10^{38} \, \text{m}^3 \][/tex]
Calculating the denominator:
[tex]\[ (6.67430 \times 10^{-11} \, \text{m}^3 \text{kg}^{-1} \text{s}^{-2})(2 \times 10^{30} \, \text{kg}) = 1.33486 \times 10^{20} \, \text{m}^3 \text{s}^{-2} \][/tex]
Combining these:
[tex]\[ T^2 = \frac{2.67077 \times 10^{38}}{1.33486 \times 10^{20}} \approx 2.6735 \times 10^{19} \][/tex]
[tex]\[ T \approx \sqrt{2.6735 \times 10^{19}} \approx 5.1706 \times 10^{9} \, \text{s} \][/tex]
Finally, we convert the orbital period from seconds to Earth years:
[tex]\[ 1 \, \text{year} = 365.25 \, \text{days} \times 24 \, \text{hours/day} \times 60 \, \text{minutes/hour} \times 60 \, \text{seconds/minute} = 3.15576 \times 10^{7} \, \text{s/year} \][/tex]
[tex]\[ T_{\text{years}} = \frac{5.1706 \times 10^{9} \, \text{s}}{3.15576 \times 10^{7} \, \text{s/year}} \approx 163.85 \, \text{years} \][/tex]
Therefore, the orbital period of Neptune is approximately:
[tex]\[ 164 \, \text{Earth years} \][/tex]
So the correct answer is:
[tex]\[ \boxed{164 \, \text{Earth years}} \][/tex]
[tex]\[ T^2 = \frac{4\pi^2 r^3}{GM_{\text{sun}}} \][/tex]
where:
- [tex]\( T \)[/tex] is the orbital period of the planet,
- [tex]\( r \)[/tex] is the average distance from the planet to the Sun (in meters),
- [tex]\( G \)[/tex] is the gravitational constant [tex]\((6.67430 \times 10^{-11} \, m^3 kg^{-1} s^{-2})\)[/tex],
- [tex]\( M_{\text{sun}} \)[/tex] is the mass of the Sun [tex]\((2 \times 10^{30} \, kg)\)[/tex].
Firstly, we need to convert the distance from Astronomical Units (AU) to meters:
[tex]\[ 1 \, \text{AU} = 1.496 \times 10^{11} \, \text{m} \][/tex]
[tex]\[ \text{distance}_{\text{Neptune-Sun}} = 30 \, \text{AU} \times 1.496 \times 10^{11} \, \text{m/AU} = 4.488 \times 10^{12} \, \text{m} \][/tex]
Next, we plug in the values into Kepler's third law to find [tex]\( T \)[/tex]:
[tex]\[ T^2 = \frac{4 \pi^2 (4.488 \times 10^{12} \, \text{m})^3}{(6.67430 \times 10^{-11} \, \text{m}^3 \text{kg}^{-1} \text{s}^{-2})(2 \times 10^{30} \,\text{kg})} \][/tex]
Calculating the numerator:
[tex]\[ 4 \pi^2 (4.488 \times 10^{12} \, \text{m})^3 \approx 2.67077 \times 10^{38} \, \text{m}^3 \][/tex]
Calculating the denominator:
[tex]\[ (6.67430 \times 10^{-11} \, \text{m}^3 \text{kg}^{-1} \text{s}^{-2})(2 \times 10^{30} \, \text{kg}) = 1.33486 \times 10^{20} \, \text{m}^3 \text{s}^{-2} \][/tex]
Combining these:
[tex]\[ T^2 = \frac{2.67077 \times 10^{38}}{1.33486 \times 10^{20}} \approx 2.6735 \times 10^{19} \][/tex]
[tex]\[ T \approx \sqrt{2.6735 \times 10^{19}} \approx 5.1706 \times 10^{9} \, \text{s} \][/tex]
Finally, we convert the orbital period from seconds to Earth years:
[tex]\[ 1 \, \text{year} = 365.25 \, \text{days} \times 24 \, \text{hours/day} \times 60 \, \text{minutes/hour} \times 60 \, \text{seconds/minute} = 3.15576 \times 10^{7} \, \text{s/year} \][/tex]
[tex]\[ T_{\text{years}} = \frac{5.1706 \times 10^{9} \, \text{s}}{3.15576 \times 10^{7} \, \text{s/year}} \approx 163.85 \, \text{years} \][/tex]
Therefore, the orbital period of Neptune is approximately:
[tex]\[ 164 \, \text{Earth years} \][/tex]
So the correct answer is:
[tex]\[ \boxed{164 \, \text{Earth years}} \][/tex]
Thank you for visiting our platform. We hope you found the answers you were looking for. Come back anytime you need more information. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Stay curious and keep coming back to Westonci.ca for answers to all your burning questions.